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Abstract 
 
Many philosophers, psychologists, biologists, computer scientists, and linguists have 
argued that language processing serves as a foundation for human cognition. However, 
evidence from neuroscience has shown that language might rely on specialized cognitive 
mechanisms that are distinct from many aspects of human thought. In this thesis, I use 
cognitive neuroscience to test the limits of the brain’s functional specialization for 
language processing. In Chapter 1, I describe how evidence from neuroscience can 
illuminate the relationship between language and other cognitive functions. In Chapter 
2, I investigate activity in the brain’s language network in response to computer code, an 
input that shares many structural similarities with natural language. I find that, despite 
these similarities, the language network responds weakly or not at all during computer 
code comprehension; instead, this process elicits responses in brain areas of a distinct, 
domain-general multiple demand network. In Chapter 3 and Chapter 4, I study the 
language network’s responses to pictures of objects and events during semantic tasks, 
which, like language comprehension, require access to conceptual information. I show 
that the language network does not respond during an object semantics task and that its 
responses to event semantics are not causally important for performing the task. In 
Chapter 5, I describe a set of brain regions that respond to semantic demand regardless 
of stimulus type (sentences vs. pictures) and show that they are distinct from both the 
language network and the domain-general multiple demand network. Finally, in 
Chapter 6, I discuss the implications of my work for a neuroscience-informed account of 
the mechanisms underlying human cognition and language use. My work establishes 
that language processing mechanisms are largely distinct from mechanisms that support 
the processing of non-linguistic structure and meaning, even for closely matched inputs, 
and helps further delineate the functional architecture of the human mind. 
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Chapter 1  
 

Introduction 
 
 

1.1 Language as a foundation for human cognition? 
 
Language is a unique cognitive skill that sets humans apart from other animals. Is it a 
coincidence that a species whose members can flexibly share knowledge amongst each 
other has achieved such remarkable evolutionary success? Surely not: the ability to share 
information between individuals is vital to the gradual accumulation of knowledge from 
generation of generation, enabling each individual to learn not only from their experience, 
but also from the experience of many others. However, there might also be a more direct 
link between language and human advancement as a species: language might serve as a 
foundation for other cognitive abilities that underlie human intelligence.  
 
Many thinkers have posited a strong connection between language and other aspects of 
human cognition, in fields as diverse as philosophy (Carruthers, 2002; Davidson, 1975; 
Gauker, 2011; Wittgenstein, 1961), psychology (Sokolov, 1972; Vygotsky, 1934; Watson, 
1920), linguistics (Asoulin, 2016; Berwick & Chomsky, 2016; Bickerton, 1990; Chomsky, 
2007; Hinzen, 2013; Jackendoff, 1996; Oller Jr., 1981), and artificial intelligence (T. B. 
Brown et al., 2020; Goldstein & Papert, 1977; Turing, 1950; Winograd, 1976). Edward Sapir 
was a well-known proponent of this view, stating: “Language and our thought-grooves 
are inextricably interwoven, are, in a sense, one and the same” (Sapir, 1921). Decades later, 
Noam Chomsky also advanced the view that language is essential for thought: “The 
systems of thought … use linguistic expressions for reasoning, interpretation, organizing 
action, and other mental acts” (Chomsky, 2007). Even Charles Darwin posited a link 
between language and thought: “The continued use and advancement of [language] 
would have reacted on the mind by enabling and encouraging it to carry on long trains 
of thought” (Darwin, 1871).  
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What does it mean for language to serve as a foundation for non-linguistic cognitive 
abilities? There is no one answer to this question. In fact, the researchers mentioned above 
might have very different notions of the language-thought relationship. In this thesis, I 
evaluate a specific hypothesis about the link between language and thought: that the 
neural mechanisms used for language processing are also used for other cognitive 
functions. 
 
In the rest of this chapter, I will first outline different hypotheses that describe this 
putative relationship more precisely. Then, I will provide motivation for the studies 
included in this thesis, describe the conceptual and methodological framework 
underlying my work, and show how it can be used to test the view that language is a 
foundation for human thought. 
 

1.2 Possible hypotheses  
 
My thesis aims to address the following question: how does language processing relate 
to other cognitive functions in an adult human mind? In this section, I provide a list of 
key hypotheses addressed in my work. 
 
H1. Language processing is separate from other cognitive functions. This hypothesis 
posits that language processing has a dedicated cognitive module in the brain, distinct 
from both lower-level processes (such as speech perception) and higher-level processes 
(such as reasoning). If true, language should be considered one of many cognitive 
capacities that contribute to human intelligence, but not a “foundation” for them. 
 
H2. Language shares processing mechanisms with other domains that use symbolic 
composition. This hypothesis postulates that the mechanisms that underlie language 
processing are also used to carry out symbolic composition in other domains, such as 
music, math, or logic. This view relies on the fact that language use requires composing 
discrete symbolic units in flexible ways using a system of hierarchical recursive rules. 
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This ability is sometimes posited as the defining characteristic of human intelligence (e.g., 
Berwick et al., 2013; Berwick & Chomsky, 2016; Hauser et al., 2002).  
 
H3. Language shares processing mechanisms with conceptual reasoning. According to 
this view, neural circuits that underlie language processing are also used to store, retrieve, 
and flexibly combine concepts. If so, linguistic processing is recruited during all 
conceptual reasoning processes, including inner thought. The exact form in which 
concepts are stored is under debate: a strong view posits that lexical and conceptual units 
are the same (e.g., Deacon, 1998; Oller Jr., 1981), whereas a weaker view might state that 
linguistic information constitutes just one part of a distributed conceptual representation 
(e.g., Barsalou, 2008; Paivio, 1991). Regardless of these differences, the key distinguishing 
feature of this view is that conceptual processing takes place within the language circuits.  
 
This view that conceptual reasoning relies on linguistic processing mechanisms is often 
conflated with the postulation of the so-called “language of thought” (Fodor, 1975). The 
language of thought hypothesis states that inner thought and conceptual reasoning rely 
on a set of discrete internal symbols (“concepts”), which, just like words in a sentence, 
combine to yield an infinite number of combinations. In principle, language of thought 
might be able to operate completely independently from natural language, and thus the 
language of thought hypothesis is not the subject of this work. 
 
The three hypotheses outlined above are focused on the mechanistic aspect of the 
language-thought relationship (are the language processing mechanisms also recruited 
for something else?) and thus leave out many other ways in which language might relate 
to thought. For instance, the contemporary discussion of the Sapir-Whorf hypothesis 
(also known as linguistic relativity) centers on the claim that the way a given language 
partitions the conceptual space into words can affect the way the language users think, 
even in situations when they are not using the language. For instance, people might be 
faster to distinguish colors that have different labels than colors with the same label (e.g., 
Winawer et al., 2007; Regier & Kay, 2009; cf. S. Chen et al., in prep; Martinovic et al., 2020), 
and users of languages with allocentric spatial reference frames (“the pen is north of the 
notebook”) might be much more attuned to the cardinal directions than users of language 
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with egocentric reference frames (“the pen is to the left of the notebook”; e.g., P. Brown 
& Levinson, 1992, 1993; cf. Li et al., 2011; Li & Gleitman, 2002). However, the Sapir-Whorf 
accounts typically do not depend on specific, mechanistic hypotheses about the role of 
language processing circuits. Language might affect conceptual reasoning not because 
these two functions rely on shared processing mechanisms, but because the language 
module interacts with other cognitive modules or because linguistic input influenced 
non-linguistic systems during learning. In all these cases, linguistic relativity accounts 
would still hold. Thus, the discussion of linguistic relativity is also largely outside the 
scope of this thesis.  
 
Finally, as mentioned at the beginning of the chapter, language unquestionably affects 
thought in a more trivial way: it is an important source of information about the world. 
Language provides us with large amounts of conceptual knowledge from other people, 
without the need to acquire it from direct observation. This knowledge then serves as a 
substrate for reasoning and problem solving. In that sense, language is an essential 
component of human cognition. The question I address is much more specific: do the 
mechanisms that underlie language processing also contribute to other abilities that make 
up human intelligence?  
 

1.3 Background: specificity of language processing in the brain 
 
Two lines of work provide compelling evidence that language is neurally distinct from 
other cognitive functions (for a review, see Fedorenko & Varley, 2016). One is evidence 
from brain imaging. Studies investigating brain responses to language found a network of 
left-lateralized regions in frontal and temporal lobes, which is consistently recruited for 
language processing. This network responds to written, spoken, and signed linguistic 
input (e.g., Deniz et al., 2019; Fedorenko et al., 2010; MacSweeney et al., 2002; M. Regev 
et al., 2013; Scott et al., 2017), is engaged in both comprehension and production (J. Hu et 
al., 2021; Menenti et al., 2011), and responds during both task-driven paradigms and 
passive reading/listening (Cheung et al., 2020; Diachek et al., 2020; Fedorenko et al., 2010). 
So far there appears to be little functional specialization within different language-
responsive regions, all of which are sensitive to phonological, syntactic, and semantic 
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properties of the input (Bautista & Wilson, 2016; Blank, Balewski, et al., 2016; Blank & 
Fedorenko, 2020; Fedorenko, Behr, et al., 2011; Fedorenko, Duncan, et al., 2012; Fedorenko 
et al., 2020a; T. I. Regev et al., 2021). Furthermore, these regions show correlated patterns 
of brain activity, both during language use and during passive rest conditions (Blank et 
al., 2014a; Blank & Fedorenko, 2017; Braga et al., 2020; Lerner et al., 2011; Silbert et al., 
2014; Wilson et al., 2008), suggesting that they form a functionally coherent network 
(which I henceforth call the language network). The language network — if defined using 
methods that account for inter-individual variability in its location (see Section 1.5.1) — 
is extremely selective, responding to language input but not to mental arithmetic, music 
perception, executive function tasks, and action/gesture perception (Amalric & Dehaene, 
2019; X. Chen et al., 2021; Fedorenko, Behr, et al., 2011; Jouravlev et al., 2019; Liu et al., 
2020; Monti et al., 2009, 2012; Pritchett et al., 2018).  
 
The other line of work highlighting the functional specificity of language regions is 
evidence from people with global aphasia, a major impairment of language affecting both 
production and comprehension. Despite the nearly complete loss of linguistic abilities, 
some individuals with global aphasia can appreciate music, solve arithmetic problems 
and logic puzzles, leverage their world knowledge to perform diverse tasks, orient 
themselves in space, reason about cause and effect, and navigate complex social 
situations (Bek et al., 2010; Klessinger et al., 2007; Varley, 1998; Varley et al., 2001, 2005; 
Varley & Siegal, 2000; Willems et al., 2011). This line of evidence is consistent with earlier 
reports of intact music skills (e.g., Basso & Capitani, 1985; Luria et al., 1965), conceptual 
reasoning (e.g., Caramazza et al., 1982), and planning and social skills (Lecours & Joanette, 
1980) in the presence of severe language impairment. The rich line of work examining 
language processing in individuals with aphasia dates back to 19th century, when several 
physicians treating individuals with brain damage (most notably, Broca and Wernicke) 
noted that certain lesions, localized to the left hemisphere, caused an impairment in 
language without affecting reasoning (Broca, 1861, 1865; Dax, 1865; Lichtheim, 1885; 
Wernicke, 1874).  
 
Thus, converging evidence from neuroimaging and individuals with aphasia points to 
the functional independence of mechanisms underlying language processing, lending 
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strong support to H1. However, we cannot yet fully discard the alternative hypotheses. 
H2 states that the mechanisms for syntactic processing (or, more broadly, symbolic 
combination) are shared between language and other cognitive domains. Prior work has 
shown that syntactic combination is not fully domain-general: math and music 
processing do not rely on the language regions (Amalric & Dehaene, 2019; Basso & 
Capitani, 1985; X. Chen et al., 2021; Fedorenko, Behr, et al., 2011; Varley et al., 2005; cf. A. 
D. Patel et al., 2008). Yet, it is possible that another domain, more related to language 
either structurally or functionally, might engage the regions that we currently consider 
to be language-specific. In this thesis, I probe two such domains: computer programming 
and visually presented events. 
 
H3 states that language shares processing resources with conceptual reasoning. Although 
substantial evidence from aphasia indicates that these abilities dissociate in brain-
damaged patients (e.g., Antonucci & Reilly, 2008; Chertkow et al., 1997; Dickey & Warren, 
2015; Jefferies & Lambon Ralph, 2006; Saygin et al., 2004; cf. Saygın et al., 2003), a number 
of neuroimaging studies reported overlapping activation to conceptual tasks performed 
on linguistic and non-linguistic input (e.g., Baldassano et al., 2018; Devereux et al., 2013; 
Fairhall & Caramazza, 2013; Handjaras et al., 2017; Z. Hu et al., 2019; Jouen et al., 2015; 
Shinkareva et al., 2011; Thierry & Price, 2006; Vandenberghe et al., 1996; Visser et al., 2012; 
Wurm & Caramazza, 2019). Oftentimes this activation is observed in left frontal and 
temporal regions resembling the language network; however, deciding that these regions 
are indeed the same as the language network requires reverse inference, i.e. inferring 
function from anatomy (Poldrack, 2006, 2011). Reverse inference can be useful in certain 
cases (e.g., activity in the anatomic location corresponding to motor cortex reliably 
indicates motor circuit activity), but its use is complicated for frontal and temporal cortex, 
where the location of language-specific regions is not only debated among researchers 
(Tremblay & Dick, 2016), but also varies substantially between participants (Amunts et 
al., 1999, 2010; Fedorenko & Blank, 2020; Shashidhara, Spronkers, et al., 2019). Thus, to 
establish the involvement of the language regions in conceptual reasoning (or in any 
other cognitive process), it is first necessary to localize these regions in individual 
participants (Fedorenko et al., 2010; Fedorenko & Kanwisher, 2009). 
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1.4 Overview of this work 
 
My thesis work builds upon existing neuroimaging and aphasia studies to probe the 
limits of language processing specificity. In Chapter Chapter 2, I test H2 by asking 
whether language shares processing mechanisms with another domain that uses 
hierarchically structured symbols — computer programming. If the combinatorial 
processing within the language regions is not language-specific, we should expect the 
language regions to engage when processing computer code — a domain that has closely 
related structure and that, due to its evolutionary recency, must leverage preexisting 
brain circuits instead of innate domain-specific machinery. In Chapter 3 and Chapter 4, I 
test H3 by studying whether the language regions are engaged in conceptual reasoning 
over pictures (in the domains of object and event semantics, respectively). A similar logic 
holds: if conceptual reasoning leverages the same circuits as language processing, we 
should observe activity in the language regions during a conceptual task performed even 
on non-linguistic stimuli. In Chapter 5, I use a complementary approach: instead of 
localizing the language network and measuring its involvement in semantic reasoning, I 
localize brain regions engaged in conceptual reasoning independent of input domain 
(linguistic vs. non-linguistic) and then test whether they overlap with the language 
network.  
 
The main tool I use in my work is functional MRI, which allows me to study brain activity 
with a relatively high degree of spatial resolution. In Chapter 4, I complement fMRI data 
with behavioral evidence from individuals with global aphasia, which allows me to test 
the causal link between language processing and another aspect of human cognition.  
 

1.5 Approach 
 
1.5.1 Localizing the language network in individual brains 
 
1.5.1.1 The benefits of functional localization 
 
My neuroimaging work uses the approach known as functional localization, in which I 
define the brain network of interest using a separate task (called a localizer) instead of 
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pre-selecting regions of interest based solely on anatomy. Functional localization allows 
the researchers to overcome reliance on anatomical landmarks when establishing 
whether a given region/network is engaged in a certain task (Poldrack, 2006, 2008) while 
still providing a stable, reliable way for identifying regions of interest across studies (Saxe, 
Brett, et al., 2006). It also accounts for individual variability in the functional architecture 
of the brain (Brett et al., 2002; Nieto-Castañón & Fedorenko, 2012; Saxe, Brett, et al., 2006): 
instead of using a group activation map, the network is defined in each individual 
participant.  
 
Localizers are designed to elicit a consistent activation pattern in the brain and are 
typically robust to changes in their setup. For instance, the language network localizer 
elicits consistent activation regardless of change in materials, task, language, and spoken 
vs. written stimuli (Cheung et al., 2020; Fedorenko et al., 2010; Malik-Moraleda, Ayyash 
et al, 2022; Scott et al., 2017), the multiple demand network localizer elicits a consistent 
response pattern during a spatial working memory task, a memory probe task on 
nonwords (harder) vs. sentences (easier), and an arithmetic task (Fedorenko et al., 2013), 
and the theory of mind network localizer elicits the same response pattern during both 
verbal and non-verbal narratives that recruit theory of mind reasoning (Jacoby et al., 
2016).  
 
The precision afforded by the functional localization method is especially important 
when testing a hypothesis about functional specificity. The key question of this thesis is 
whether the language regions are engaged in non-linguistic cognition. Traditional 
approaches in neuroimaging would address this question using group-level activation 
maps, which estimate each voxel’s responses to conditions of interest across participants. 
However, if the same voxel belongs to different functional networks in different 
participants, the group-level approach will fail: it will show the same voxel responding 
to both conditions (e.g., sentences and computer code) even if, in reality, it responded 
only to sentences in a subset of participants and only to computer code in the other subset 
(Fedorenko & Kanwisher, 2009; Nieto-Castañón & Fedorenko, 2012; Shashidhara, 
Mitchell, et al., 2019). This issue is particularly pressing when studying associative cortex, 
which shows substantial inter-individual variability in the anatomical location of 
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functionally specialized regions (Amunts et al., 1999; Caspers et al., 2006; Tahmasebi et 
al., 2012; Vázquez-Rodríguez et al., 2019). Thus, to determine true functional selectivity 
of a given brain region, we have to evaluate it at the level of individual participants rather 
than averaging responses across many brains.  
 

1.5.1.2 Deriving and studying functional regions of interest 
 
The general approach is shown in Figure 1-1 (for details, see Fedorenko et al., 2010). I 
start with a set of predefined anatomical masks of brain regions (also called “parcels”), 
which mark the approximate location of the network I aim to examine. Then, in each 
participant, I select a subset of voxels within each parcel that respond most strongly to 
the contrast of interest from the localizer task. Thus, the anatomical location of the 
selected voxels is allowed to vary between participants, provided that it falls within the 
parcel. The main goal of using anatomical region masks to constrain voxel selection is to 
have consistent units of comparison across individuals and studies (Julian et al., 2012). 
The cutoff I use is the top 10% of voxels in each parcel, but the exact cutoff point is not 
critical as long as it is not overly permissive. The subset of a parcel selected according to 
this procedure is called a functional region of interest (fROI). 
 
As is common in neuroimaging studies, the metric of interest used for voxel selection is 
not the voxels’ response to a single condition but rather a contrast value — the difference 
in responses to two conditions that are matched except for the property of interest. For 
the language localizer, the contrast I use is sentence reading > nonword reading. 
Nonwords are pronounceable strings of letters/characters in the same script as the 
sentences; thus, their visual properties are matched but their content differs (nonwords 
are syntactically and semantically empty). The exact contrast used to functionally localize 
the language network can vary: for instance, the spoken sentences > muffled spoken 
sentences contrast elicits the same activation pattern (Scott et al., 2017), which serves as 
verification that both contrasts isolate activity related to language, regardless of whether 
it is spoken or written. The language I use in the studies below is English. 
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Once the functional network is defined, we can then measure its response to any 
conditions of interest. We can analyze the network-level response (averaged across all 
fROIs that comprise the network), fROI-level responses (averaged across voxels within 
an fROI), or the pattern of voxel responses within each fROI. When analyzing the results, 
care must be taken that the data use to define the fROIs are different from the data used 
to derive key measures of interest, such as response magnitude (Kriegeskorte et al., 2009; 
Vul & Kanwisher, 2010). 
 

 
Figure 1-1. The functional localization approach. 

 

1.5.1.3 Pre-selecting anatomical regions of interest (parcels) 
 
How do we decide which brain regions to include in the initial mask used to constrain 
the voxel search? Several options are possible. First, the regions can be defined 
anatomically based on previous reports of their involvement in the function of interest 
(see, e.g., Fedorenko et al., 2013). Second, they can be derived from prior studies 
quantitatively, e.g., by using a map of activations obtained from many labs and research 
paradigms (Yarkoni et al., 2011) or from many participants within the same paradigm 
(Lipkin et al., 2022; Van Essen et al., 2013). Finally, they can be derived from a subset of 
data collected for the purposes of the study (Fedorenko et al., 2010). 
 
In the work described in this thesis, I use language and multiple demand network parcels 
derived from the data of many individuals who did the respective network localizer tasks 
(n=220 for language and n=197 for multiple demand). The procedure for deriving the 
parcels is part of the group-constrained subject-specific (GcSS) functional localization 



 
 
 

21 

approach described in Fedorenko et al (2010); in short, it involves creating a set of binary 
masks (parcels) from a probabilistic overlap map derived from binarized individual 
activation maps (thresholded at a prespecified p value). Voxels within each parcel are 
spatially contiguous.  
 
When conducting whole-brain analyses that require generating new parcels, I use the 
GcSS procedure to create the parcels based on data from the critical task (e.g., putative 
computer-code-responsive regions), define fROIs within the parcels, and then test their 
responses to conditions of interest. In this case, the number of participants used to define 
the parcels is the same as the number of participants in that study.  
  

1.5.2 Combining neuroimaging evidence from neurotypicals and 
behavioral evidence from aphasia 

 
Neuroimaging tools, such as functional MRI, provide a unique opportunity to map out 
the functional response profile of the language network. However, the inferences derived 
from fMRI are even more powerful when combined with evidence from individuals with 
language impairments, such as aphasia. Section 1.3 shows that many neuroimaging and 
aphasia studies provide converging evidence for language specificity in the brain. In 
Chapter 4, I build on both approaches by reporting data from fMRI studies on 
neurotypical individuals and from behavioral studies on individuals with aphasia.  
 
Both fMRI and aphasia studies have certain shortcomings that might limit the use of these 
sources of evidence as tests of the functional specificity of the language regions. However, 
when used together, they provide complementary sources of evidence that can, in many 
cases, overcome these shortcomings. Functional MRI, as any neuroimaging method, is a 
correlational technique that cannot establish the causal link between observed activity 
and the behavior of interest. Thus, if we observe activity in the language regions in 
response to a certain task, we cannot establish whether this activity is causally important 
for that task. In contrast, evidence from aphasia can provide us with causal evidence of a 
functional dissociation between two functions: if a cognitive ability is preserved in spite 
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of severe language impairment, we can conclude that this ability does not depend on 
language processing (as I do in Chapter 4). 
 
On the flip side, if an individual with aphasia exhibits concomitant deficits in a non-
linguistic task, we cannot conclusively state that language shares neural processing 
mechanisms with that task. The pattern of brain damage after stroke (the most common 
cause of aphasia) does not respect functional borders and depends primarily on 
vasculature patterns. Thus, a lesion can easily destroy two or more functionally distinct 
regions that happen to lie nearby. This situation is common in the inferior frontal lobe, 
which is known to be functionally heterogeneous (Fedorenko, Duncan, et al., 2012; 
Fedorenko & Blank, 2020). In contrast, functional localization methods for fMRI allow us 
to precisely delineate the borders of functionally distinct brain regions and determine 
which of the functional networks in engaged in a given task. Thus, if evidence from 
aphasia indicate a correlation between impairment in two functions but neuroimaging 
shows these functions to be neurally distinct, we can attribute the shared impairment 
pattern to the fact that the lesion affected two different networks (as I do in Chapter 3). 
 
Although not done here, correlational and causal approaches can sometimes be combined 
in a single participant group: individuals with aphasia can undergo functional MRI to 
have their brain networks localized (Blank et al., 2015, 2017) and neurotypical individuals 
can undergo both fMRI and a causal intervention that alters their brain activity for a short 
period of time, such as transcranial magnetic or direct current stimulation (e.g., Groen et 
al., 2021; Pitcher et al., 2011). Both are promising research directions, although their 
limitations should also be acknowledged. In case of aphasia studies, brain networks 
reorganize themselves after damage, and so the functional specialization patterns (and 
their corresponding cognitive mechanisms) observed in brains after stroke may differ 
from those observed in neurotypical individuals. For brain stimulation studies, 
transcranial stimulation techniques are spatially imprecise and, like brain lesions, might 
affect multiple functionally distinct regions that lie nearby; furthermore, they have 
limited potential to reach deeper brain structures or the ventral surface of the brain. In 
general, however, all these approaches reflect the abundant opportunities to investigate 
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the functional architecture of the human mind and brain using tools from cognitive 
neuroscience. 
 

1.6 Using data from neuroscience to inform cognitive theories 
 
The question addressed in this thesis is, in essence, a cognitive one: does one mental 
function (language) share processing mechanisms with others? Functionally localizing 
the language network provides a way to explicitly link this question to neuroscience 
evidence. A detailed characterization of the functionally defined language network 
across many studies allows us to infer function (language processing) from a brain 
activation pattern (voxels responding most strongly to the language localizer contrast). 
Thus, even though the localizer only covers a specific aspect of language (English 
sentence reading as contrasted with English-like nonword reading), prior work showing 
that this activation pattern remains the same regardless of modality, language, or task 
(Section 1.3) allows me to use localized regions as a functional marker of language 
processing (Mather et al., 2013). 
 
A long line of research on the neural basis of language (Section 1.3) illustrates the tight 
link between cognitive theory and neuroscience. Cognitive theory is used to generate 
hypotheses about the functional organization of the brain (such as a putative shared 
mechanism for language and music processing; e.g., Baroni et al., 1983; Fay, 1971; Lerdahl 
& Jackendoff, 1996; Swain, 1995; cf. Jackendoff, 2009), and neuroscience findings, in turn, 
inform cognitive theory (music and language recruit different brain areas and are 
therefore processed by different mechanisms; e.g., Basso & Capitani, 1985; X. Chen et al., 
2021; Fedorenko, McDermott, et al., 2012; Norman-Haignere et al., 2015; Rogalsky et al., 
2011). This mutually enriching connection is observed in many areas of cognitive 
neuroscience (Mather et al., 2013).  
 
A tight integration of cognitive theory and neuroscience has the potential to lead to 
evidence-based cognitive ontologies (Lenartowicz et al., 2010; Poldrack et al., 2011; C. J. 
Price & Friston, 2005), which allow us to generate mechanistic descriptions of cognitive 
processes as interactions between empirically validated cognitive modules. In the 
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concluding chapter (Section 6.2), I attempt to do just that. Specifically, I draw upon my 
work, along with many other cognitive neuroscience studies, to discuss the role of the 
language network in the broader system of cognitive mechanisms underlying language 
use. I argue that, not only are the core language processing mechanisms functionally 
specific to language, but they are also, on their own, insufficient for real-life language use. 
The language network has to interface with domain-general regions that track discourse-
level information, with regions that carry out social reasoning and formal logic (so that 
the utterances are pragmatically and logically coherent), and possibly with semantic 
demand regions described in Chapter 5. All these regions are not language-specific 
— meaning that they respond to both verbal and nonverbal inputs — and can function 
even in the absence of a functional language system. Thus, instead of serving as a 
foundation for thought, language processing is only one tool in our rich cognitive toolbox. 
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Collaborators:  

Shashank Srikant, Yotaro Sueoka, Hope H. Kean, Riva Dhamala,  
Una-May O’Reilly, Marina U. Bers, Evelina Fedorenko 

  
This chapter has been published as a journal article in eLife (under a CC BY 4.0 license):  
Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O'Reilly, U. M., Bers, M. 
U. & Fedorenko, E. (2020). Comprehension of computer code relies primarily on domain-
general executive brain regions. eLife, 9, e58906. 
 
It is reproduced here with slight alterations. 
  
 

2.1 Abstract  
 
Computer programming is a novel cognitive tool that has transformed modern society. 
What cognitive and neural mechanisms support this skill? Here, we used fMRI to 
investigate two candidate brain systems: the multiple demand (MD) system, typically 
recruited during math, logic, problem solving, and executive tasks, and the language 
system, typically recruited during linguistic processing. We examined MD and language 
system responses to code written in Python, a text-based programming language 
(Experiment 1) and in ScratchJr, a graphical programming language (Experiment 2); for 
both, we contrasted responses to code problems with responses to content-matched 
sentence problems. We found that the MD system exhibited strong bilateral responses to 
code in both experiments, whereas the language system responded strongly to sentence 
problems, but weakly or not at all to code problems. Thus, the MD system supports the 
use of novel cognitive tools even when the input is structurally similar to natural 
language. 
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2.2 Introduction 
 
The human mind is endowed with a remarkable ability to support novel cognitive skills, 
such as reading, writing, map-based navigation, mathematical reasoning, and scientific 
logic. Recently, humanity has invented another powerful cognitive tool: computer 
programming. The ability to flexibly instruct programmable machines has led to a rapid 
technological transformation of communities across the world (Ensmenger, 2012); 
however, little is known about the cognitive and neural systems that underlie computer 
programming skills. 
 
Here, we investigate which neural systems support one critical aspect of computer 
programming: computer code comprehension. By code comprehension, we refer to a set 
of cognitive processes that allow programmers to interpret individual program tokens 
(such as keywords, variables, and function names), combine them to extract the meaning 
of program statements, and, finally, combine the statements into a mental representation 
of the entire program. It is important to note that code comprehension may be cognitively 
and neurally separable from cognitive operations required to process program content, 
i.e., the actual operations described by code. For instance, to predict the output of the 
program that sums the first three elements of an array, the programmer should identify 
the relevant elements and then mentally perform the summation. Most of the time, 
processing program content recruits a range of cognitive processes known as 
computational thinking (Wing, 2006, 2011), which include algorithm identification, 
pattern generalization/abstraction, and recursive reasoning (e.g., Kao, 2011). These 
cognitive operations are notably different from code comprehension per se and may not 
require programming knowledge at all (Guzdial, 2008). Thus, research studies where 
people read computer programs should account for the fact that interpreting a computer 
program involves two separate cognitive phenomena: processing computer code that 
comprises the program (i.e., code comprehension) and mentally simulating the 
procedures described in the program (i.e., processing problem content). 
 
Given that code comprehension is a novel cognitive tool, typically acquired in late 
childhood or in adulthood, we expect it to draw on preexisting cognitive systems. 
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However, the question of which cognitive processes support code comprehension is non-
trivial. Unlike some cognitive inventions that are primarily linked to a single cognitive 
domain (e.g., reading/writing building on spoken language), code comprehension 
plausibly bears parallels to multiple distinct cognitive systems. First, it may rely on 
domain-general executive resources, including working memory and cognitive control 
(Bergersen & Gustafsson, 2011; Nakagawa et al., 2014; Nakamura et al., 2003). In addition, 
it may draw on the cognitive systems associated with math and logic (McNamara, 1967; 
Papert, 1972), in line with the traditional construal of coding as problem-solving (Dalbey 
& Linn, 1985; Ormerod, 1990; Pea & Kurland, 1984; Pennington & Grabowski, 1990). 
Finally, code comprehension may rely on the system that supports comprehension of 
natural languages (Fedorenko et al., 2019; Murnane, 1993; Papert, 1993). Like natural 
language, computer code makes heavy use of hierarchical structures (e.g., loops, 
conditionals, and recursive statements), and, like language, it can convey an unlimited 
amount of meaningful information (e.g., describing objects or action sequences). These 
similarities could, in principle, make the language circuits well-suited for processing 
computer code. 
 
Neuroimaging research is well positioned to disentangle the relationship between code 
comprehension and other cognitive domains. Many cognitive processes are known to 
evoke activity in specific brain regions/networks: thus, observing activity for the task of 
interest in a particular region or network with a known function can indicate which 
cognitive processes are likely engaged in that task (Mather et al., 2013). Prior research 
(Assem, Glasser, et al., 2020; Duncan, 2010, 2013; Duncan & Owen, 2000) has shown that 
executive processes — such as attention, working memory, and cognitive control — 
recruit a set of bilateral frontal and parietal brain regions collectively known as the 
multiple demand (MD) system. If code comprehension primarily relies on domain-
general executive processes, we expect to observe code-evoked responses within the MD 
system, distributed across both hemispheres. Math and logic also evoke responses within 
the MD system (Fedorenko et al., 2013), although this activity tends to be left-lateralized 
(Amalric & Dehaene, 2016, 2019; Goel & Dolan, 2001; Micheloyannis et al., 2005; Monti et 
al., 2007, 2009; Pinel & Dehaene, 2009; Prabhakaran et al., 1997; Reverberi et al., 2009). If 
code comprehension draws on the same mechanisms as math and logic, we expect to 
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observe left-lateralized activity within the MD system. Finally, comprehension of natural 
language recruits a set of left frontal and temporal brain regions known as the language 
system (e.g., Fedorenko & Thompson-Schill, 2014). These regions respond robustly to 
linguistic input, both visual and auditory (Deniz et al., 2019; Fedorenko et al., 2010; Nakai 
et al., 2020; M. Regev et al., 2013; Scott et al., 2017). However, they show little or no 
response to tasks in non-linguistic domains, such as executive functions, math, logic, 
music, action observation, or non-linguistic communicative signals, such as gestures 
(Fedorenko, Behr, et al., 2011; Jouravlev et al., 2019; Monti et al., 2009, 2012; Pritchett et 
al., 2018; see Fedorenko & Blank, 2020, for a review). If code comprehension relies on the 
same circuits that map form to meaning in natural language, we expect to see activity 
within the language system. 
 
Evidence from prior neuroimaging investigations of code comprehension is inconclusive. 
Existing studies have provided some evidence for left-lateralized activity in regions that 
roughly correspond to the language system (Siegmund et al., 2014, 2017), as well as some 
evidence for the engagement of frontal and parietal regions resembling the MD system 
(Floyd et al., 2017; Huang et al., 2019; Siegmund et al., 2014, 2017). However, none of these 
prior studies sought to explicitly distinguish code comprehension from other 
programming-related processes, and none of them provide quantitative evaluations of 
putative shared responses to code and other tasks, such as working memory, math, or 
language (cf. Liu et al., 2020; see Discussion). 
 
Here, we use functional magnetic resonance imaging (fMRI) to evaluate the role of the 
MD system and the language system in computer code comprehension. Three design 
features that were lacking in earlier neuroimaging studies of programming allow us to 
evaluate the relative contributions of these two candidate systems. First, we contrast 
neural responses evoked by code problems with those evoked by content-matched 
sentence problems (Figure 2-1, A); this comparison allows us to disentangle activity 
evoked by code comprehension from activity evoked by the underlying program content 
(which is matched across code and sentence problems). 
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Second, we use independent ‘localizer’ tasks (Brett et al., 2002; Fedorenko et al., 2010; 
Saxe, Brett, et al., 2006) to identify our networks of interest: a working memory task to 
localize the MD system and a passive reading task to localize the language system (Figure 
2-1, B). The functional localization approach obviates the reliance on the much-criticized 
‘reverse inference’ reasoning (Poldrack, 2006, 2011), whereby functions are inferred from 
coarse macro-anatomical landmarks. Instead, we can directly interpret code-evoked 
activity within functionally defined regions of interest (Mather et al., 2013). In addition, 
localization of the MD and language networks is performed in individual participants, 
which is important given substantial variability in their precise locations across 
individuals (Fedorenko & Blank, 2020; Shashidhara, Spronkers, et al., 2019) and leads to 
higher sensitivity and functional resolution (Nieto-Castañón & Fedorenko, 2012). 
 
Third, to draw general conclusions about code comprehension, we investigate two very 
different programming languages: Python, a popular general-purpose programming 
language, and ScratchJr, an introductory visual programming language for creating 
animations designed for young children (Bers & Resnick, 2015). In the Python experiment, 
we further examine two problem types (math problems and string manipulation) and 
three basic types of program structure (sequential statements, for loops, and if statements). 
Comprehension of both Python and ScratchJr code requires retrieving the meaning of 
program tokens and combining them into statements, despite the fact that the visual 
features of the tokens in the two languages are very different (text vs. images). If a brain 
system is involved in code comprehension, we expect its response to generalize across 
programming languages and problem types, similar to how distinct natural languages in 
bilinguals and multilinguals draw on the same language regions (Kroll et al., 2015). 
 
Taken together, these design features of our study allow us to draw precise and 
generalizable conclusions about the neural basis of code comprehension. 
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Figure 2-1. Experimental paradigms. (A) Main task. During code problem trials, 
participants were presented with snippets of code in Python (Experiment 1) or ScratchJr 
(Experiment 2); during sentence problem trials, they were presented with text problems 
that were matched in content with the code stimuli. Each participant saw either the code 
or the sentence version of any given problem. (B) Localizer tasks. The MD localizer (top) 
included a hard condition (memorizing positions of 8 squares appearing two at a time) 
and an easy condition (memorizing positions of 4 squares appearing one at a time). The 
language localizer (bottom) included a sentence reading and a nonword reading 
condition, with the words/nonwords appearing one at a time. 

 

2.3 Results 
 
Participants performed a program comprehension task inside an MRI scanner. In each 
trial, participants, all proficient in the target programming language, read either a code 
problem or a content-matched sentence problem (Figure 2-1, A) and were asked to 
predict the output. In Experiment 1 (24 participants, 15 women), code problems were 
written in Python, a general-purpose text-based programming language (Sanner, 1999). 
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In Experiment 2 (19 participants, 12 women), code problems were written in ScratchJr, an 
introductory graphical programming language developed for children aged 5-7 (Bers, 
2018). Both experiments were conducted with adults to facilitate result comparison. Good 
behavioral performance confirmed that participants were proficient in the relevant 
programming language and engaged with the task (Python: 99.6% response rate, 85% 
accuracy on code problems; ScratchJr: 98.6% response rate, 79% accuracy on code 
problems; see Supplemental figure 2-2 for detailed behavioral results). Participants 
additionally performed two functional localizer tasks: a hard vs. easy spatial working 
memory task, used to define the MD system, and a sentence vs. nonword reading task, 
used to define the language system (Figure 2-1, B; see Section 2.5 for details). 
 
We then contrasted neural activity in the MD and language systems during code problem 
comprehension with activity during (a) sentence problem comprehension and (b) the 
nonword reading condition from the language localizer task. Sentence problem 
comprehension requires simulating the same operations as code problem comprehension 
(mathematical operations or string manipulation for Python, video simulation for 
ScratchJr), so contrasting code problems with sentence problems allows us to isolate 
neural responses evoked by code comprehension from responses evoked by processing 
problem content. Nonword reading elicits weak responses in both the language system 
and the MD system (in the language system, this response likely reflects low-level 
perceptual and/or phonological processing; in the MD system, it likely reflects the basic 
task demands associated with maintaining attention or reading pronounceable letter 
strings). Because the nonword response is much weaker than responses to the localizer 
conditions of interest (Fedorenko et al., 2010; Mineroff et al., 2018), nonword reading can 
serve as a control condition for both the MD and language systems, providing a more 
stringent baseline than simple fixation. Given the abundant evidence that the MD system 
and the language system are each strongly functionally interconnected (Blank et al., 
2014b; Mineroff et al., 2018; Paunov et al., 2019), we perform the key analyses at the 
system level. 
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2.3.1 MD system exhibits robust and generalizable bilateral responses 
during code comprehension 

 
We found strong bilateral responses to code problems within the MD system in both 
Experiments 1 and 2 (Figure 2-2, Figure 2-3). These responses were stronger than 
responses to both the sentence problem condition (Python: β = 1.03, p < 0.001, ScratchJr: 
β = 1.38, p < 0.001) and the control nonword reading condition (Python: β = 2.17, p < 
0.001; ScratchJr: β = 1.23, p < 0.001). The fact that code problems drove the MD system 
more strongly than content-matched sentence problems (despite the fact that sentence 
problems generally took longer to respond to; see Supplemental figure 2-2) demonstrate 
that the MD system responds to code comprehension specifically rather than simply 
being activated by the underlying problem content. 
 
To further test the generalizability of MD responses, we capitalized on the fact that our 
Python stimuli systematically varied along two dimensions: (1) problem type (math 
problems vs. string manipulation), and (2) problem structure (sequential statements, for 
loops, if statements). Strong responses were observed in the MD system (Figure 2-4, A, 
B) regardless of problem type (β = 3.02, p < 0.001; no difference between problem types) 
and problem structure (β = 3.14, p < 0.001; sequential problems evoked a slightly weaker 
response, β = -0.20, p = 0.002). This analysis demonstrates that the responses were not 
driven by one particular type of problem or by mental operations related to the 
processing of a particular code structure. 
 
We also tested whether MD responses to code showed a hemispheric bias similar to what 
is typically seen for math and logic problems (Goel & Dolan, 2001; Micheloyannis et al., 
2005; Monti et al., 2007, 2009; Pinel & Dehaene, 2009; Prabhakaran et al., 1997; Reverberi 
et al., 2009). Neither Python nor ScratchJr problems showed a left-hemisphere bias for 
code comprehension. For Python, the size of the code problems>sentence problems effect 
did not interact with hemisphere (β = 0.11, p = 0.46), even though the magnitude of 
responses to code problems as compared to nonword reading was stronger in the left 
hemisphere (β = 0.63, p < 0.001). These results show that neural activity evoked by Python 
code comprehension was bilaterally distributed but that activity evoked by the 
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underlying problem content was left-lateralized. For ScratchJr, the size of the code 
problems>sentence problems effect interacted with hemisphere, with stronger responses 
in the right hemisphere (β = 0.57, p = 0.001), perhaps reflecting the bias of the right 
hemisphere toward visuo-spatial processing  (Corballis, 2003; Hugdahl, 2011; Sheremata 
et al., 2010). 
 
Follow-up analyses of activity in individual regions within the MD system demonstrated 
that 17 of the 20 MD fROIs (all except the fROIs located in left medial frontal cortex and 
in the left and right insula) responded significantly more strongly to Python code 
problems than to sentence problems (see Supplemental table 2-1 for all fROI statistics). 
Responses to ScratchJr were significantly stronger than responses to sentence problems 
in 6 of the 10 left hemisphere MD fROIs (the effect was not significant in the fROIs in 
superior frontal gyrus, the dorsal part of the precentral gyrus, the medial frontal cortex, 
and the insula) and in 8 of the 10 right hemisphere MD fROIs (the effect was not 
significant in the fROIs in the medial frontal cortex and the insula; see Supplemental 
table 2-2 for all fROI statistics). These analyses demonstrate that code processing is 
broadly distributed across the MD system rather than being localized to a particular 
region or to a small subset of regions. 
 
Overall, we show that MD responses to code are strong, do not exclusively reflect 
responses to problem content, generalize across programming languages and problem 
types, and are observed across most MD fROIs. 
 
 



 
 
 

34 

 
Figure 2-2. (A) Candidate brain systems of interest. The areas shown represent the 
“parcels” used to define the MD and language systems in individual participants (see 
Section 2.5 and Supplemental figure 2-5). (B, C) Mean responses to the language 
localizer conditions (SR - sentence reading and NR - nonwords reading) and to the critical 
task (SP - sentence problems and CP - code problems) in systems of interest across 
programming languages (B – Python, C - ScratchJr). In the MD system, we see strong 
responses to code problems in both hemispheres and to both programming languages; 
the fact that this response is stronger than the response to content-matched sentence 
problems suggests that it reflects activity evoked by code comprehension per se rather 
than just activity evoked by problem content. In the language system, responses to code 
problems elicit a response that is substantially weaker than that elicited by sentence 
problems; further, only in Experiment 1 do we observe responses to code problems that 
are reliably stronger than the responses to the language localizer control condition 
(nonword reading). Here and elsewhere, error bars show standard error of the mean 
across participants, and the dots show individual participants’ responses. 
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Figure 2-3. Responses to sentence problems (red) and code problems (purple) during 
Experiment 1 (Python; A) and Experiment 2 (ScratchJr; B) broken down by region within 
each system. Abbreviations: mid – middle, ant – anterior, post – posterior, orb – orbital, 
MFG – middle frontal gyrus, IFG – inferior frontal gyrus, temp – temporal lobe, AngG – 
angular gyrus, precentral_A – the dorsal portion of precentral gyrus, precentral_B – the 
ventral portion of precentral gyrus. A solid line through the bars in each sub-plot 
indicates the mean response across the fROIs in that plot. 

 

2.3.2 No MD fROIs are selective for code comprehension 
 
To determine whether any fROIs were driven selectively (preferentially) by code 
problems relative to other cognitively demanding tasks, we contrasted individual fROI 
responses to code problems with responses to a hard working memory task from the MD 



 
 
 

36 

localizer experiment. Three fROIs located in the left frontal lobe (“precentral_A”, 
“precentral_B”, and “midFrontal”) exhibited stronger responses to Python code 
problems than to the hard working memory task (β = 1.21, p < 0.001; β = 1.89, p < 0.001; 
and β = 0.79, p = 0.011, respectively; Supplemental figure 2-6). However, the magnitude 
of the code problems > sentence problems contrast in these regions (β = 1.03, 0.95, 0.97) 
was comparable to the average response magnitude across all MD fROIs (average β = 
1.03), suggesting that the high response was caused by processing the underlying 
problem content rather than by code comprehension per se. Furthermore, neither these 
nor any other MD fROIs exhibited higher responses to ScratchJr code compared to the 
hard working memory task (in fact, the “precentral_A” fROI did not even show a 
significant code problems>sentence problems effect). We conclude that code 
comprehension is broadly supported by the MD system (similarly to, e.g., intuitive 
physical inference; Fischer et al., 2016), but no MD regions are functionally specialized to 
process computer code. 
 

2.3.3 Language system responses during code comprehension are weak 
and inconsistent 

 
The responses to code problems within the language system 2 (Figure 2-2, Figure 2-3) 
were weaker than responses to sentence problems in both experiments (Python: β = 0.98, 
p < 0.001; ScratchJr: β = 0.99, p < 0.001). Furthermore, although the responses to code 
problems were stronger than the responses to nonword reading for Python (β = 0.78, p < 
0.001), this was not the case for ScratchJr (β = 0.15, p = 0.29), suggesting that the language 
system is not consistently engaged during computer code comprehension. 
 
We further tested whether responses to Python code problems within the language 
system may be driven by the presence of English words. Our stimuli were constructed 
such that half of the Python problems contained meaningful identifier names, and in the 
other half, the English identifiers were replaced with their Japanese translations, making 
them semantically meaningless for non-speakers of Japanese. For this analysis, we 
divided our participants into two groups — those with no reported knowledge of 
Japanese (N=18) and those with some knowledge of Japanese (N=6) — and compared 
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responses within their language regions to code problems with English vs. Japanese 
identifiers (Figure 2-4, C). We found no effect of identifier language (β = 0.03, p = 0.84), 
knowledge of Japanese (β = 0.03, p = 0.93), or interaction between them (β = 0.09, p = 
0.71), indicating that the language system’s response to Python code was not driven by 
the presence of semantically transparent identifiers. This result is somewhat surprising 
given the language system’s strong sensitivity to word meanings (e.g., Anderson et al., 
2019; Binder et al., 2009; Fedorenko et al., 2010, 2020; Pereira et al., 2018). One possible 
explanation is that participants do not deeply engage with the words’ meanings in these 
problems because these meanings are irrelevant to finding the correct solution. 
 

 
Figure 2-4. Follow-up analyses of responses to Python code problems. (A) MD system 
responses to math problems vs. string manipulation problems. (B) MD system responses 
to code with different structure (sequential vs. for loops vs. if statements). (C) Language 
system responses to code problems with English identifiers (codeE) and code problems 
with Japanese identifiers (codeJ) in participants with no knowledge of Japanese (non-
speakers) and some knowledge of Japanese (speakers) (see Section 2.3.3 for details of this 
manipulation). (D) Spatial correlation analysis of voxel-wise responses within the 
language system during the main task (SP – sentence problems and CP – code problems) 
with the language localizer conditions (SR – sentence reading and NR – nonwords 
reading). Each cell shows a correlation between the activation patterns for each pair of 
conditions. Within-condition similarity is estimated by correlating activation patterns 
across independent runs. 

 
Finally, we investigated whether the responses to Python code problems within the 
language system were driven by code comprehension specifically or rather by the 
underlying problem content. When examining responses in the MD system, we could 
easily disentangle the neural correlates of code comprehension vs. the processing of 
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problem content using univariate analyses: the code problems > sentence problems 
contrast isolated code comprehension-related processes, and the sentence problems > 
nonword reading contrast isolated responses to problem content. In the language system, 
however, the sentence problems > nonword reading response is additionally driven by 
language comprehension (unlike the MD system, which does not respond to linguistic 
input in the absence of task demands, as evidenced by its low responses during sentence 
reading; see also Blank & Fedorenko, 2017; Diachek et al., 2020). Thus, responses to 
Python code might be evoked both by problem content and by the language-like features 
of Python code. To determine the relative contributions of these two factors, we 
computed voxel-wise spatial correlations within and between the code problem and 
sentence problem conditions, as well as correlations between these conditions and the 
sentence/nonword reading conditions from the language localizer task (Figure 2-4, D). 
We reasoned that if a system is driven by problem content, the activation patterns for 
code and sentence problems should be similar; in contrast, if a system is driven by code 
comprehension per se, the activation patterns for code and sentence problems should 
differ. We found that the activation patterns were highly correlated between the code and 
sentence problems (r = 0.69, p < 0.001). These correlation values were higher than the 
correlations between code problems and sentence reading (0.69 vs. 0.65; p < 0.001), 
although lower than the correlations within the code problem condition (0.69 vs. 0.73; p 
< 0.001). The fact that code and sentence problem responses are correlated over and above 
code problem and sentence reading responses indicates that the language system is 
sensitive to the content of the stimulus rather than just the stimulus type (code vs. words). 
Moreover, similarly to the MD system, problem content can account for a substantial 
portion of the response in the language regions (∆r = 0.04). Note that a similar spatial 
correlation analysis in the MD system mirrored the result of univariate analyses 
(Supplemental figure 2-9). Thus, in both MD and language systems, response to Python 
code is driven both by problem content and by code-specific responses. 
 
Overall, we found that the language system responded to code problems written in 
Python but not in ScratchJr. Furthermore, Python responses were driven not only by code 
comprehension, but also by the processing of problem content. We conclude that 
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successful comprehension of computer code can proceed without engaging the language 
network. 
 

2.3.4 No consistent evidence of code-responsive regions outside the 
MD/language systems 

 
To search for code-responsive regions that might fall outside the MD and language 
systems, we performed a whole-brain GSS analysis (Fedorenko et al., 2010). GSS analysis 
serves the same goal as the traditional random-effects voxel-wise analysis (A. P. Holmes 
& Friston, 1998) but accommodates inter-individual variability in the precise locations of 
functional regions, thus maximizing the likelihood of finding responsive regions (Nieto-
Castañón & Fedorenko, 2012). We searched for areas of activation for the code 
problems>sentence problems contrast (separately for Python and ScratchJr) that were 
spatially similar across participants. We then examined the response of such regions to 
code and sentence problems (using an across-runs cross-validation procedure; e.g., 
Nieto-Castañón & Fedorenko, 2012), as well as to conditions from the two localizer 
experiments. In both experiments, the discovered regions spatially resembled the MD 
system (Supplemental figure 2-7 and Supplemental figure 2-8). For Python, any region 
that responded to code also responded to the spatial working memory task (the MD 
localizer). In case of ScratchJr, some fROIs responded more strongly to code problems 
than to the spatial working memory task; these fROIs were located in early visual 
areas/ventral visual stream and therefore likely responded to low-level visual properties 
of ScratchJr code (which includes colorful icons, objects, etc.). The traditional random-
effects group analyses revealed a similar activation pattern (Supplemental figure 2-3 and 
Supplemental figure 2-4). These whole-brain analyses demonstrate that the MD system 
responds robustly and consistently to computer code, recapitulating the results of the 
fROI-based analyses (Figures 2.2-2.4), and show that fROI-based analyses did not miss 
any non-visual code-responsive or code-selective regions outside the boundaries of the 
MD system. 
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2.3.5 Effect of proficiency on MD and language responses 
 
We conducted an exploratory analysis to check whether engagement of the MD and/or 
language system in code comprehension varies with the level of programming expertise. 
We correlated responses within each system with independently obtained proficiency 
scores for Experiment 1 participants (see the paper’s website for details: 
https://github.com/ALFA-group/neural-program-comprehension) and with in-
scanner accuracy scores for Experiment 2 participants. No correlations were significant 
(see Supplemental figure 2-10). However, due to a relatively low number of participants 
(N=24 and N=19, respectively), these results should be interpreted with caution. 
 
 

2.4 Discussion 
 
The ability to interpret computer code is a remarkable cognitive skill that bears parallels 
to diverse cognitive domains, including general executive functions, math, logic, and 
language. The fact that coding can be learned in adulthood suggests that it may rely on 
existing cognitive systems. Here, we tested the role of two candidate neural systems in 
computer code comprehension: the domain-general multiple demand (MD) system 
(Duncan, 2010) that has been linked to diverse executive demands and implicated in math 
and logic (e.g., Amalric & Dehaene, 2019; Goel, 2007; Monti et al., 2007, 2009), and the 
language-selective system (Fedorenko et al., 2011) that has been linked to lexical and 
combinatorial linguistic processes (e.g., Bautista & Wilson, 2016; Fedorenko et al., 2010, 
2020b; Fedorenko, Nieto-Castañon, et al., 2012; Keller et al., 2001; Mollica et al., 2020). We 
found robust bilateral responses to code problems within the MD system, a pattern that 
held across two very different programming languages (Python and ScratchJr), types or 
problems (math and string manipulation), and problem structure (sequential statements, 
for loops, and if statements). In contrast, responses in the language system were 
substantially lower than those elicited by the content-matched sentence problems and 
exceeded responses to the control condition (nonwords reading) only for one of the two 
programming languages tested. 
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Our work uniquely contributes to the study of computer programming in the mind and 
brain by addressing two core issues that made it difficult to interpret results from prior 
studies. First, we disentangle responses evoked by code comprehension from responses 
to problem content (which is often not code-specific) by contrasting code problems with 
content-matched sentence problems. Our findings suggest that earlier reports of left-
lateralized code-evoked activity (Siegmund et al., 2014) may reflect processing program 
content rather than code comprehension per se. This distinction should also be 
considered when interpreting results of other studies of programming effects on brain 
activity, such as debugging (Castelhano et al., 2019), variable tracking (Ikutani & Uwano, 
2014; Nakagawa et al., 2014), use of semantic cues or program layout (Fakhoury et al., 
2018; Siegmund et al., 2017), program generation (Krueger et al., 2020), and programming 
expertise (Ikutani et al., 2020). 
 
Second, we analyze responses in brain areas that are functionally localized in individual 
participants, allowing for straightforward interpretation of the observed responses 
(Mather et al., 2013; Saxe, Brett, et al., 2006). This approach stands in contrast to the 
traditional approach, whereby neural responses are averaged across participants on a 
voxel-by-voxel basis, and the resulting activation clusters are interpreted via ‘reverse 
inference’ from anatomy (e.g., Poldrack, 2006, 2011). Functional localization is 
particularly important when analyzing responses in frontal, temporal, and parietal 
association cortex, which is known to be functionally heterogeneous and variable across 
individuals (Blank et al., 2017; Braga et al., 2019; Fedorenko & Kanwisher, 2009; Frost & 
Goebel, 2012; Shashidhara, Spronkers, et al., 2019; Tahmasebi et al., 2012; Vázquez-
Rodríguez et al., 2019). 
 
The results of our work align well with the results of another recent study on program 
comprehension (Liu et al., 2020). Liu et al. investigated the neural correlates of program 
comprehension by contrasting Python code problems with fake code. The code problem 
condition was similar to ours, whereas the fake code condition involved viewing 
scrambled code, followed by a visual recognition task. The code problems > fake code 
contrast is broader than ours: it includes both code comprehension (interpreting Python 
code) and the processing of problem content (manipulating characters in a string). Our 
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results show that the MD system is involved in both processes, but Python code 
comprehension is bilateral, whereas the processing of problem content is left-lateralized. 
We would therefore expect the code problems > fake code contrast to activate the MD 
system, engaging the left hemisphere more strongly than the right due to the demands of 
problem content processing. This is precisely what Liu et al. find. Further, similar to us, 
Liu et al. conclude that it is the MD regions, not the language regions, that are primarily 
involved in program comprehension.  
 

2.4.1 MD system’s engagement reflects the use of domain-general 
resources  

 
The fact that the MD system responds to code problems over and above content-matched 
sentence problems underscores the role of domain-general executive processes in code 
comprehension. Although cognitive processes underlying code interpretation bear 
parallels to logic and math tasks (Papert, 1972; Pennington & Grabowski, 1990; Perkins & 
Simmons, 1988) and to natural language comprehension/generation (Fedorenko et al., 
2019; Hermans & Aldewereld, 2017), the neural activity we observe primarily resembles 
activity observed in response to domain-general executive tasks (Assem, Glasser, et al., 
2020; Duncan, 2010; Fedorenko et al., 2013). In particular, code comprehension elicits 
bilateral responses within the MD system, in contrast to math and logic tasks that tend to 
elicit left-lateralized responses within the MD system, and in contrast to language tasks 
that elicit responses in the spatially and functionally distinct language system. 
 
We found that responses in the MD system were driven both by the processing of 
problem content (e.g., summing the contents of an array) and by code comprehension 
(e.g., identifying variables referring to an array and its elements, interpreting a for loop, 
realizing that the output of the program is the variable being updated inside the for loop). 
Both of these processes plausibly require attention, working memory, inhibitory control, 
planning, and general flexible relational reasoning—cognitive processes long linked to 
the MD system (Duncan, 2010, 2013; Duncan & Owen, 2000; Miller & Cohen, 2001) in 
both humans (Assem, Glasser, et al., 2020; Shashidhara, Mitchell, et al., 2019; Woolgar et 
al., 2018b) and non-human primates (Freedman et al., 2001; Miller et al., 1996; D. J. 
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Mitchell et al., 2016). A recent study (Huang et al., 2019) reported neural overlap between 
operations on programming data structures (which require both code comprehension 
and the processing of problem content) and a mental rotation task (which requires spatial 
reasoning). The overlap was observed within brain regions whose topography grossly 
resembles that of the MD system. In our study, all code-responsive brain regions outside 
the visual cortex also responded robustly during a spatial memory task (Supplemental 
figure 2-7 and Supplemental figure 2-8), similarly to the results reported in Huang et al. 
(2019). However, the MD system is not specifically tuned to spatial reasoning (Duncan, 
2010; Fedorenko et al., 2013; Michalka et al., 2015), so the overlap between code 
comprehension and spatial reasoning likely reflects the engagement of domain-general 
cognitive processes, like working memory and cognitive control, as opposed to processes 
specific to spatial reasoning. 
 
Furthermore, given that no regions outside of the MD system showed code-specific 
responses, it must be the case that code-specific knowledge representations are also stored 
within this system (see Hasson et al., 2015, for a general discussion of the lack of 
distinction between storage and computing resources in the brain). Such code-specific 
representations would likely include both knowledge specific to a programming 
language (e.g., the syntax marking an array in Java vs. Python) and knowledge of 
programming concepts that are shared across languages (e.g., for loops). Much evidence 
suggests that the MD system can flexibly store task-relevant information in the short term 
(e.g., Fedorenko et al., 2013; Freedman et al., 2001; Shashidhara, Mitchell, et al., 2019; Wen 
et al., 2019; Woolgar et al., 2011). However, evidence from studies on processing 
mathematics (e.g., Amalric & Dehaene, 2019) and physics (e.g., Cetron et al., 2019; Fischer 
et al., 2016) further suggests that the MD system can store some domain-specific 
representations in the long term, perhaps for evolutionarily late-emerging and 
ontogenetically late-acquired domains of knowledge. Our data add to this body of 
evidence by showing that the MD system stores and uses information required for code 
comprehension. 
 
We also show that, instead of being concentrated in one region or a subset of the MD 
system, code-evoked responses are distributed throughout the MD system. This result 
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seems to violate general metabolic and computational efficiency principles that govern 
much of the brain’s architecture (Chklovskii & Koulakov, 2004; Kanwisher, 2010): if some 
MD neurons are, at least in part, functionally specialized to process computer code, we 
would expect them to be located next to each other. Three possibilities are worth 
considering. First, selectivity for code comprehension in a subset of the MD network may 
only emerge with years of experience (e.g., in professional programmers). Participants in 
our experiments were all proficient in the target programming language but most had 
only a few years of experience with it. Second, code-selective subsets of the MD network 
may be detectable at higher spatial resolution, using invasive methods like 
electrocorticography (Parvizi & Kastner, 2018) or single-cell recordings (Mukamel & 
Fried, 2012). And third, perhaps the need to flexibly solve novel problems throughout 
one’s life prevents the ‘crystallization’ of specialized subnetworks within the MD cortex. 
That said, it may also be the case that some subset of the MD network is causally 
important for code comprehension even though it does not show strong selectivity for it, 
similar to how damage to some MD areas (mostly, in the left parietal cortex) appears to 
lead to deficits in numerical cognition (Ardila & Rosselli, 2002; Kahn & Whitaker, 1991; 
Lemer et al., 2003; Rosselli & Ardila, 1989; Takayama et al., 1994), even though these 
regions do not show selectivity for numerical tasks in fMRI (Pinel et al., 2004; Shuman & 
Kanwisher, 2004). 
 

2.4.2 The language system is functionally conservative  
 
We found that the language system does not respond consistently during code 
comprehension in spite of numerous similarities between code and natural languages 
(Fedorenko et al., 2019). Perhaps the most salient similarity between these input types is 
their syntactic/combinatorial structure. Some accounts of language processing claim that 
syntactic operations that support language processing are highly abstract and insensitive 
to the nature of the to-be-combined units (e.g., Berwick et al., 2013; Fitch et al., 2005; Fitch 
& Martins, 2014; Hauser et al., 2002). Such accounts predict that the mechanisms 
supporting structure processing in language should also get engaged when we process 
structure in other domains, including computer code. Prior work has already put into 
question this idea in its broadest form: processing music, whose hierarchical structure 
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has long been noted to have parallels with linguistic syntax (e.g., Lerdahl & Jackendoff, 
1996; cf. Jackendoff, 2009), does not engage the language system (e.g., Fedorenko, Behr, 
et al., 2011; Rogalsky et al., 2011; Chen et al, in prep.). Our finding builds upon the results 
from the music domain to show that compositional input (here, variables and keywords 
combining into statements) and hierarchical structure (here, conditional statements and 
loops) do not necessarily engage language-specific regions. 
 
Another similarity shared by computer programming and natural language is the use of 
symbols — units referring to concepts “out in the world”. Studies of math and logic, 
domains that also make extensive use of symbols, show that those domains do not, in 
fact, rely on the language system (Amalric & Dehaene, 2019; Cohen et al., 2000; Fedorenko, 
Behr, et al., 2011; Monti et al., 2009, 2012; Pinel & Dehaene, 2009; Varley et al., 2005), a 
conclusion consistent with our findings. However, these findings might be explained by 
the hypothesis that mathematics makes use of a different conceptual space altogether 
(Cappelletti et al., 2001), in which case the symbol-referent analogy would be weakened. 
Our work provides an even stronger test of the symbolic reference hypothesis: the 
computer code problems we designed are not only symbolic, but also refer to the same 
conceptual representations as the corresponding verbal problems (Figure 2-1, A). This 
parallel is particularly striking in the case of ScratchJr: each code problem refers to a 
sequence of actions performed by a cartoon character—a clear case of reference to 
concepts in the physical world. And yet, the language regions do not respond to ScratchJr, 
showing a clear preference for  language over other types of meaningful structured input 
(see also Ivanova et al., 2019). 
 
The third similarity between code and natural language is the communicative use of 
those systems (Allamanis et al., 2018). The programming languages we chose are very 
high-level, meaning that they emphasize human readability (Buse & Weimer, 2010; Klare, 
1963) over computational efficiency. ScratchJr is further optimized to be accessible and 
engaging for young children (Sullivan & Bers, 2019). Thus, code written in these 
languages is meant to be read and understood by humans, not just executed by machines. 
In this respect, computer code comprehension is similar to reading in natural language: 
the goal is to extract a meaningful message produced by another human at some point in 
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the past. And yet the communicative nature of this activity is not sufficient to recruit the 
language system, consistent with previous reports showing a neural dissociation between 
language and other communication-related activities, such as gesture processing 
(Jouravlev et al., 2019), intentional actions (Pritchett et al., 2018), or theory of mind tasks 
(Apperly et al., 2006; Dronkers et al., 1998; Jacoby et al., 2016; Paunov et al., 2019; Varley 
& Siegal, 2000). 
 
Of course, the lack of consistent language system engagement in code comprehension 
does not mean that the mechanisms underlying language and code processing are 
completely different. It is possible that both language and MD regions have similarly 
organized neural circuits that allow them to process combinatorial input or map between 
a symbol and the concept it refers to. However, the fact that we observed code-evoked 
activity primarily in the MD regions indicates that code comprehension does not load on 
the same neural circuits as language and needs to use domain-general MD circuits instead. 
 
More work is required to determine why the language system showed some activity in 
response to Python code. The most intuitive explanation posits that the language system 
responds to meaningful words embedded within the code; however, this explanation 
seems unlikely given the fact that the responses were equally strong when reading 
problems with semantically meaningful identifiers (English) and semantically 
meaningless identifiers (Japanese; Figure 2-4, C). Another possibility is that participants 
internally verbalized the symbols they were reading (where “verbalize” means to retrieve 
the word associated with a certain symbol rather than a simple reading response, since 
the latter would be shared with nonwords). However, this account does not explain the 
fact why such verbalization would be observed for Python and not for ScratchJr, where 
many blocks have easy labels, such as “jump”. It is also inconsistent with observations 
that even behaviors that ostensibly require subvocal rehearsal (e.g., mathematical 
operations) do not engage the language system (see e.g., Amalric & Dehaene, 2019; 
Fedorenko, Behr, et al., 2011). Finally, the account that we consider most likely is that the 
responses were driven by processing underlying problem content and thus associated 
with some aspect(s) of computational thinking that were more robustly present in Python 
compared to ScratchJr problems. Further investigations of the role of the language system 
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in computational thinking have the potential to shed light on the exact computations 
supported by these regions. 
 
Finally, it is possible that the language system may play a role in learning to program 
(Prat et al., 2020), even if it is not required to support code comprehension once the skill 
is learned. Studies advocating the ‘coding as another language’ approach (Bers, 2018, 
2019; Sullivan & Bers, 2019) have found that treating coding as a meaning-making activity 
rather than merely a problem-solving skill had a positive impact on both teaching and 
learning to program in the classroom (Hassenfeld et al., 2020; Hassenfeld & Bers, 2020). 
Such results indicate that the language system and/or the general semantic system might 
play a role in learning to process computer code, especially in children, when the 
language system is still developing. This idea remains to be empirically evaluated in 
future studies. 
 

2.4.3 Limitations of scope 
 
The stimuli used in our study were short and only included a few basic elements of 
control flow (such as for loops and if statements). Furthermore, we focused on code 
comprehension, which is a necessary but not sufficient component of many other 
programming activities, such as code generation, editing, and debugging. Future work 
should investigate changes in brain activity during the processing and generation of more 
complex code structures, such as functions, objects, and large multi-component programs. 
Just like narrative processing recruits systems outside the regions that support single 
sentence processing  (Baldassano et al., 2018; Blank & Fedorenko, 2020; Ferstl et al., 2008; 
Jacoby & Fedorenko, 2020; Lerner et al., 2011; Simony et al., 2016), reading more complex 
pieces of code might recruit an extended, or a different, set of brain regions. Furthermore, 
as noted above, investigations of expert programmers may reveal changes in how 
programming knowledge and use are instantiated in the mind and brain as a function of 
increasing amount of domain-relevant experience. 
 
Overall, we provide evidence that code comprehension consistently recruits the MD 
system—which subserves cognitive processing across multiple cognitive domains—but 
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does not consistently engage the language system, in spite of numerous similarities 
between natural and programming languages. By isolating neural activity specific to code 
comprehension, we pave the way for future studies examining the cognitive and neural 
correlates of programming and contribute to the broader literature on the neural systems 
that support novel cognitive tools. 
 
 

2.5 Method 
 

2.5.1 Participants 
 
For Experiment 1, we recruited 25 participants (15 women, mean age = 23.0 years, SD = 
3.0). Average age at which participants started to program was 16 years (SD = 2.6); 
average number of years spent programming was 6.3 (SD=3.8). In addition to Python, 20 
people also reported some knowledge of Java, 18 people reported knowledge of C/C++, 
4 of functional languages, and 20 of numerical languages like Matlab and R. Twenty-three 
participants were right-handed, one was ambidextrous, and one was left-handed (as 
assessed by Oldfield’s (1971) handedness questionnaire); the left-handed participant had 
a right-lateralized language system and was excluded from the analyses, leaving 24 
participants (all of whom had left-lateralized language regions, as evaluated with the 
language localizer task; see below). Participants also reported their knowledge of foreign 
languages and completed a one-hour-long Python proficiency test (available on the 
paper’s website, https://github.com/ALFA-group/neural-program-comprehension). 
 
For Experiment 2, we recruited 21 participants (13 women, mean age = 22.5 years, SD = 
2.8). In addition to ScratchJr, 8 people also reported some knowledge of Python, 6 people 
reported knowledge of Java, 9 people reported knowledge of C/C++, 1 of functional 
languages, and 14 of numerical languages like Matlab and R (one participant did not 
complete the programming questionnaire). Twenty were right-handed and one was 
ambidextrous; all participants had left-lateralized language regions, as evaluated with 
the language localizer task (see below). Two participants from Experiment 2 had to be 
excluded due to excessive motion during the MRI scan, leaving 19 participants. 
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All participants were recruited from MIT, Tufts University, and the surrounding 
community and paid for participation. All were native speakers of English, had normal 
or corrected to normal vision, and reported working knowledge of Python or ScratchJr, 
respectively. The sample size for both experiments was determined based on previous 
experiments from our group (e.g., Blank & Fedorenko, 2020; Fedorenko et al., 2020b; 
Ivanova et al., 2019) and others (e.g., Crittenden et al., 2015; Hugdahl et al., 2015; 
Shashidhara, Mitchell, et al., 2019). The protocol for the study was approved by MIT’s 
Committee on the Use of Humans as Experimental Subjects (COUHES). All participants 
gave written informed consent in accordance with protocol requirements. 
 

2.5.2 Design, materials, and procedure 
 
All participants completed the main program comprehension task, a spatial working 
memory localizer task aimed at identifying the multiple demand (MD) brain regions 
(Fedorenko, Behr, et al., 2011), and a language localizer task aimed at identifying 
language-responsive brain regions (Fedorenko et al., 2010). 
 

2.5.2.1 Program comprehension tasks 
 
The program comprehension task in Experiment 1 included three conditions: programs 
in Python with English identifiers, programs in Python with Japanese identifiers, and 
sentence versions of those programs (visually presented). The full list of problems can be 
found on the paper’s website, https://github.com/ALFA-group/neural-program-
comprehension. Each participant saw 72 problems, and any given participant saw only 
one version of a problem. Half of the problems required performing mathematical 
operations, and the other half required string manipulations. In addition, both math and 
string-manipulation problems varied in program structure: 1/3 of the problems of each 
type included only sequential statements, 1/3 included a for loop, and 1/3 included an if 
statement. 
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During each trial, participants were instructed to read the problem statement and press 
a button when they were ready to respond (the minimum processing time was restricted 
to 5 s and the maximum to 50 s; mean reading time was 19 s). Once they pressed the 
button, four response options were revealed, and participants had to indicate their 
response by pressing one of four buttons on a button box. The response screen was 
presented for 5 s (see Supplemental figure 2-1, A, for a schematic of trial structure). Each 
run consisted of 6 trials (2 per condition), and 3 fixation blocks (at the beginning and end 
of the run, and after the third trial), each lasting 10 s. A run lasted, on average, 176 s (SD 
= 34 s), and each participant completed 12 runs. Condition order was counterbalanced 
across runs and participants. 
 
The program comprehension task in Experiment 2 included two conditions: short 
programs in ScratchJr and the sentence versions of those programs (visually presented). 
ScratchJr is a language designed to teach programming concepts to young children (Bers, 
2018): users can create events and sequences of events (stories) with a set of characters 
and actions. The full list of problems used in the study can be found on the paper’s 
website. Each participant saw 24 problems, and any given participant saw only one 
version of a problem. Furthermore, problems varied in the complexity of the code snippet 
(3 levels of difficulty; 8 problems at each level). 
 
During each trial, participants were presented with a fixation cross for 4 s, followed by a 
description (either a code snippet or a sentence) to read for 8 s. The presentation of the 
description was followed by 5-9 s of fixation, and then by a video (average duration: 4.13 
s, SD: 1.70 s) that either did or did not match the description. Participants had to indicate 
whether the video matched the description by pressing one of two buttons on a button 
box in the scanner. The response window started with the onset of the video and included 
a 4 s period after the video offset. A trial lasted, on average, 27.46 s (SD = 2.54 s; see 
Supplemental figure 2-1, B, for a schematic of trial structure). Each run consisted of 6 
trials (3 per condition), and a 10 s fixation at the beginning and end of the run. A run 
lasted, on average, 184.75 s (SD = 3.86 s); each participant completed 4 runs. Condition 
order was counterbalanced across runs and participants. 
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2.5.2.2 Multiple demand localizer 
 
To localize MD system within individual participants, we conducted a spatial working 
memory task. Participants had to keep track of four (easy condition) or eight (hard 
condition) sequentially presented locations in a 3 × 4 grid (Figure 2-1, B; Fedorenko et al., 
2011). In both conditions, they performed a two-alternative forced-choice task at the end 
of each trial to indicate the set of locations they just saw. The hard > easy contrast has 
been previously shown to reliably activate bilateral frontal and parietal MD regions 
(Assem, Glasser, et al., 2020; Blank et al., 2014b; Fedorenko et al., 2013). Numerous studies 
have shown that the same brain regions are activated by diverse executively-demanding 
tasks (Duncan & Owen, 2000; Fedorenko et al., 2013; Hugdahl et al., 2015; Shashidhara, 
Mitchell, et al., 2019; Woolgar et al., 2011). Stimuli were presented in the center of the 
screen across four steps. Each step lasted 1 s and revealed one location on the grid in the 
easy condition, and two locations in the hard condition. Each stimulus was followed by 
a choice-selection step, which showed two grids side by side. One grid contained the 
locations shown across the previous four steps, while the other contained an incorrect set 
of locations. Participants were asked to press one of two buttons to choose the grid that 
showed the correct locations. Condition order was counterbalanced across runs. 
Experimental blocks lasted 32 s (with 4 trials per block), and fixation blocks lasted 16 s. 
Each run (consisting of 4 fixation blocks and 12 experimental blocks) lasted 448 s. Each 
participant completed 2 runs. 
 

2.5.2.3 Language localizer 
 
The language localizer task was conducted in order to identify the language system 
within individual participants. Participants read sentences (e.g., NOBODY COULD 
HAVE PREDICTED THE EARTHQUAKE IN THIS PART OF THE COUNTRY) and lists 
of unconnected, pronounceable nonwords (e.g., U BIZBY ACWORRILY MIDARAL 
MAPE LAS POME U TRINT WEPS WIBRON PUZ) in a blocked design. Each stimulus 
consisted of twelve words/nonwords. For details of how the language materials were 
constructed, see Fedorenko et al. (2010). The materials are available at 
http://web.mit.edu/evelina9/www/funcloc/funcloc_localizers.html. The sentences > 
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nonword-lists contrast isolates processes related to language comprehension (responses 
evoked by, e.g., visual perception and reading are subtracted out) and has been 
previously shown to reliably activate left-lateralized fronto-temporal language 
processing regions, be robust to changes in task and materials, and activate the same 
regions regardless of whether the materials were presented visually or auditorily 
(Fedorenko et al., 2010; Mahowald & Fedorenko, 2016; Scott et al., 2017). Further, a similar 
network emerges from task-free resting-state data (Braga et al., 2020). Stimuli were 
presented in the center of the screen, one word/nonword at a time, at the rate of 450 ms 
per word/nonword. Each stimulus was preceded by a 100 ms blank screen and followed 
by a 400 ms screen showing a picture of a finger pressing a button, and a blank screen for 
another 100 ms, for a total trial duration of 6 s. Participants were asked to press a button 
whenever they saw the picture of a finger pressing a button. This task was included to 
help participants stay alert. Condition order was counterbalanced across runs. 
Experimental blocks lasted 18 s (with 3 trials per block), and fixation blocks lasted 14 s. 
Each run (consisting of 5 fixation blocks and 16 experimental blocks) lasted 358 s. Each 
participant completed 2 runs. 
 

2.5.3 fMRI data acquisition 
 
Structural and functional data were collected on the whole-body, 3 Tesla, Siemens Trio 
scanner with a 32-channel head coil, at the Athinoula A. Martinos Imaging Center at the 
McGovern Institute for Brain Research at MIT. T1-weighted structural images were 
collected in 176 sagittal slices with 1mm isotropic voxels (TR = 2,530 ms, TE = 3.48 ms). 
Functional, blood oxygenation level dependent (BOLD), data were acquired using an EPI 
sequence (with a 90o flip angle and using GRAPPA with an acceleration factor of 2), with 
the following acquisition parameters: thirty-one 4mm thick near-axial slices acquired in 
the interleaved order (with 10% distance factor), 2.1 mm × 2.1 mm in-plane resolution, 
FoV in the phase encoding (A>>P) direction 200mm and matrix size 96 mm × 96 mm, TR 
= 2,000 ms and TE = 30 ms. The first 10 s of each run were excluded to allow for steady 
state magnetization. 
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2.5.4 fMRI data preprocessing 
 
fMRI data were analyzed using SPM12 (release 7487), CONN EvLab module (release 
19b), and other custom MATLAB scripts. Each participant’s functional and structural 
data were converted from DICOM to NIFTI format. All functional scans were 
coregistered and resampled using B-spline interpolation to the first scan of the first 
session (Friston et al., 1995). Potential outlier scans were identified from the resulting 
subject-motion estimates, as well as from BOLD signal indicators, using default 
thresholds in CONN preprocessing pipeline (5 standard deviations above the mean in 
global BOLD signal change, or framewise displacement values above 0.9 mm; Nieto-
Castañon, 2020). Functional and structural data were independently normalized into a 
common space (the Montreal Neurological Institute [MNI] template; IXI549Space) using 
SPM12 unified segmentation and normalization procedure (Ashburner & Friston, 2005) 
with a reference functional image computed as the mean functional data after 
realignment across all timepoints omitting outlier scans. The output data were resampled 
to a common bounding box between MNI-space coordinates (-90, -126, -72) and (90, 90, 
108), using 2mm isotropic voxels and 4th order spline interpolation for the functional 
data, and 1mm isotropic voxels and trilinear interpolation for the structural data. Last, 
the functional data were smoothed spatially using spatial convolution with a 4 mm 
FWHM Gaussian kernel.  
 

2.5.5 First-level analysis 
 
Responses in individual voxels were estimated using a General Linear Model (GLM) in 
which each experimental condition was modeled with a boxcar function convolved with 
the canonical hemodynamic response function (HRF) (fixation was modeled implicitly, 
such that all timepoints that did not correspond to one of the conditions were assumed 
to correspond to a fixation period). Temporal autocorrelations in the BOLD signal 
timeseries were accounted for by a combination of high-pass filtering with a 128 seconds 
cutoff and whitening using an AR(0.2) model (first-order autoregressive model linearized 
around the coefficient a=0.2) to approximate the observed covariance of the functional 
data in the context of Restricted Maximum Likelihood estimation (ReML). In addition to 
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experimental condition effects, the GLM design included first-order temporal derivatives 
for each condition (included to model variability in the HRF delays), as well as nuisance 
regressors to control for the effect of slow linear drifts, subject-motion parameters, and 
potential outlier scans on the BOLD signal. 
 
For the localizer experiments, we modeled the entire blocks. For the Python program 
comprehension experiment, we modeled the period from the onset of the code/sentence 
problem and until the button press (the responses were modeled as a separate condition; 
see Supplemental figure 2-1, A); for the ScratchJr program comprehension experiment, 
we modeled the period of the code/sentence presentation (the video and the response 
were modeled as a separate condition; see Supplemental figure 2-1, B). 
 

2.5.6 Defining MD and language functional regions of interest (fROIs) 
 
The fROI analyses examined responses in individually defined MD and language fROIs 
(functional regions of interest). These fROIs were defined using the Group-constrained 
Subject-Specific (GSS) approach (Fedorenko et al. 2010; Julian et al. 2012) where a set of 
spatial masks, or parcels, is combined with each individual subject’s localizer activation 
map, to constrain the definition of individual fROIs. The parcels delineate the expected 
gross locations of activations for a given contrast based on prior work and large numbers 
of participants and are sufficiently large to encompass the variability in the locations of 
individual activations. For the MD system, we used a set of 20 parcels (10 in each 
hemisphere) derived from a group-level probabilistic activation overlap map for the hard 
> easy spatial working memory contrast in 197 participants. The parcels included regions 
in frontal and parietal lobes, as well as a region in the anterior cingulate cortex. For the 
language system, we used a set of six parcels derived from a group-level probabilistic 
activation overlap map for the sentences > nonwords contrast in 220 participants. The 
parcels included two regions in the left inferior frontal gyrus (LIFG, LIFGorb), one in the 
left middle frontal gyrus (LMFG), two in the left temporal lobe (LAntTemp and 
LPostTemp), and one extending into the angular gyrus (LAngG). Both sets of parcels are 
available on the paper’s website; see Supplemental figure 2-5 for labeled images of MD 
and language parcels.  
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To create each set of parcels, individual activation maps for the relevant localizer contrast 
were binarized (by turning all voxels significant at the p<.001 whole-brain threshold 
(uncorrected) into 1s, and the rest into 0s) and overlaid in the MNI space to create a 
probabilistic overlap map. For the multiple demand network, the individual activation 
maps were averaged across the two hemispheres prior to binarizing. The map was then 
smoothed (FWHM = 6mm), and voxels with fewer than 10% of participants overlapping 
were excluded. The resulting map was divided into regions using a watershed algorithm. 
Finally, we excluded parcels that did not show significant effects for the relevant localizer 
contrast in a left-out run or did not contain supra-threshold voxels in at least 60% of the 
participants. For the multiple demand network, we also a) excluded parcels in the visual 
cortex (the hard condition includes more visual information than the easy condition and 
thus yields more activation in the visual cortex), and b) divided a parcel that 
encompassed parts of both the precentral gyrus and the opercular portion of the inferior 
frontal gyrus according to the macroanatomical boundary. 
 
For each participant, each set of parcels was intersected with the participant’s activation 
map for the relevant contrast (sentences>nonwords for the language network, hard>easy 
spatial WM for the multiple demand network). Within each parcel, the voxels were sorted 
based on their t-values for the relevant contrast, and the top 10% of voxels were selected 
as that participant’s fROI (see Figure 1-1 for sample language fROIs). This top n% 
approach ensures that the fROIs can be defined in every participant, thus enabling us to 
have stable units of comparison across individuals (Nieto-Castañón & Fedorenko, 2012). 
 

2.5.7 Examining the functional response profiles of MD and language 
fROIs 

 
Univariate analyses. We evaluated MD and language system responses by estimating 
their response magnitudes to the conditions of interest using individually defined fROIs 
(see above). For each fROI in each participant, we averaged the responses across voxels 
to get a single value for each of the conditions (the responses to the localizer conditions 
were estimated using an across-runs cross-validation procedure, where one run was used 
to define the fROI and the other to estimate the response magnitudes, then the procedure 
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was repeated switching which run was used for fROI definition vs. response estimation, 
and finally the estimates were averaged to derive a single value per condition per fROI 
per participant). We then ran a linear mixed-effect regression model to compare the 
responses to the critical code problem condition with (a) the responses to the sentence 
problem condition from the critical task, and (b) the responses to the nonword reading 
condition from the language localizer task. We included condition as a fixed effect and 
participant and fROI as random intercepts. For the MD system, we additionally tested the 
main (fixed) effect of hemisphere and the interaction between hemisphere and condition. We 
used dummy coding for condition, with code problems as the reference category, and sum 
coding for hemisphere. For follow-up analyses, we used the variable of interest (problem 
type/structure/identifier language) as a fixed effect and participant and fROI as random 
intercepts; dummy coding was used for all variables of interest. For fROI analyses, we 
used condition as a fixed effect and participant as a random intercept. The analyses were 
run using the lmer function from the lme4 R package (Bates et al., 2015); statistical 
significance of the effects was evaluated using the lmerTest package (Kuznetsova et al., 
2017).  
 
Spatial correlation analyses. To further examine the similarity of the fine-grained 
patterns of activation between conditions in the language system, we calculated voxel-
wise spatial correlations in activation magnitudes within the code problem condition 
(between odd and even runs), within the sentence problem condition (between odd and 
even runs), between these two conditions (we used odd and even run splits here, too, to 
match the amount of data for the within- vs. between-condition comparisons, and 
averaged the correlation values across the different splits), and between these two critical 
conditions and each of the sentence and nonword reading conditions from the language 
localizer. The correlation values were calculated for voxels in each participant’s language 
fROIs, and then averaged across participants and fROIs for plotting (the values were 
weighted by fROI size). We also used the lme4 R package to calculate statistical 
differences between spatial correlation values for code vs. other conditions (with 
participant and fROI as random intercepts); for this analysis, the correlation values were 
Fischer-transformed. 
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2.5.8 Whole-brain analyses 
 
For each of the critical experiments (Python and ScratchJr), we conducted (a) the Group-
constrained Subject-Specific (GSS) analysis (Fedorenko et al., 2010; Julian et al., 2012), and 
(b) the traditional random effects group analysis (A. P. Holmes & Friston, 1998) using the 
code problems > sentence problems contrast. The analyses were performed using the 
spm_ss toolbox (http://www.nitrc.org/projects/spm_ss), which interfaces with SPM 
and the CONN toolbox (https://www.nitrc.org/projects/conn). 
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2.7 Appendix 
 

2.7.1 Supplemental figures 
 

 
 
Supplemental figure 2-1. Trial structure of the critical task. (A) Experiment 1 - Python 
(B) Experiment 2 - ScratchJr. All analyses use fMRI responses to the “problem” step. 
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Supplemental figure 2-2. Behavioral results. (A) Python code problems had mean 
accuracies of 85.1% and 86.2% for the English-identifier (CP_en) and Japanese-identifier 
(CP_jap) conditions, respectively, and sentence problems (SP) had a mean accuracy of 
81.5%. There was no main effect of condition (CP_en, CP_jap, SP), problem structure (seq 
– sequential, for – for loops, if – if statements), or problem content (math vs. string); 
however, there was a three-way interaction among Condition (sentence problems > code 
with English identifiers), Problem Type (string > math), and Problem Structure (for loop 
> sequential; p = 0.02). Accuracy data from one participant had to be excluded due to a 
bug in the script. (B) ScratchJr code problems had a mean accuracy of 78.0%, and sentence 
problems had a mean accuracy of 87.8% (the difference was significant: p = 0.006). (C) 
Python problems with English identifiers had a mean response time (RT) of 17.56 s (SD = 
9.05), Python problems with Japanese identifiers had a mean RT of 19.39 s (SD = 10.1), 
and sentence problems had a mean RT of 21.32 s (SD = 11.6). Problems with Japanese 
identifiers took longer to answer than problems with English identifiers (β = 3.10, p = 
0.002), and so did sentence problems (β = 6.12, p < 0.001). There was also an interaction 
between Condition (sentence problems > code with English identifiers) and Program 
Structure (for > seq; β = -5.25, p < 0.001), as well as between Condition (CP_jap > CP_en) 
and Program Structure (if > seq; β = -2.83, p = 0.04). There was no significant difference 
in response times between math and string manipulation problems. (D) ScratchJr code 
problems had a mean RT of 1.14 s (SD = 0.86), and sentence problems had a mean RT of 
1.03 s (SD = 0.78; the difference was not significant. The RTs are reported with respect to 
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video offset. Items where >50% participants chose the incorrect answer for the (easy) 
verbal condition were excluded from accuracy calculations. (E) Mean accuracies for all 
Python participants were above chance. (F) Mean accuracies for all ScratchJr participants 
were above chance. 

 

 
Supplemental figure 2-3. Random-effects group-level analysis of Experiment 1 data 
(Python, code problems > sentence problems contrast). Similarly to analyses reported in 
the main text, code-evoked activity is bilateral and recruits fronto-parietal but not 
temporal regions. Cluster threshold p < 0.05, cluster-size FDR-corrected; voxel threshold: 
p < 0.001, uncorrected. 
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Supplemental figure 2-4. Random-effects group-level analysis of Experiment 2 data 
(ScratchJr, code problems > sentence problems contrast). Similarly to analyses reported 
in the main text, ScratchJr-evoked activity has a small right hemisphere bias. Cluster 
threshold p < 0.05, cluster-size FDR-corrected; voxel threshold: p < 0.001, uncorrected. 
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Supplemental figure 2-5. The parcels in the two candidate brain systems of interest, 
multiple demand (MD) and language. The parcels are derived from group-level 
representations of MD and language activity and are used to define the functional regions 
of interest (fROIs) in individual participants (NB: we show the left hemisphere parcels 
for the MD system, but the system is bilateral). For each participant, the network of 
interest is comprised of the top 10% of voxels within each parcel with the highest t-value 
for the relevant contrast (MD - hard vs. easy spatial working memory task; language – 
sentence reading vs. nonword reading; see Method). Abbreviations: mid – middle, ant – 
anterior, post – posterior, orb – orbital, MFG – middle frontal gyrus, IFG – inferior frontal 
gyrus, temp – temporal lobe, AngG – angular gyrus. 
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Supplemental figure 2-6. ROI-level responses in the multiple demand system to the 
critical task (CP – code problems, SP – sentence problems) and the spatial working 
memory task (HardWM – hard working memory task, EasyWM – easy working memory 
task). (A) Experiment 1, Python; left hemisphere fROIs; (B) Experiment 1, Python; right 
hemisphere fROIs; (C) Experiment 2, ScratchJr; left hemisphere fROIs; (D) Experiment 2, 
ScratchJr; right hemisphere fROIs. No fROIs prefer both Python and ScratchJr code 
problems over the spatial working memory task. 
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Supplemental figure 2-7. Whole-brain group-constrained subject-specific analysis (GSS; 
Fedorenko et al, 2010) based on data from Experiment 1 shows the absence of code-only 
brain regions. (a) Parcels defined on the group level using the code problems > sentence 
problems contrast, p threshold 0.001, inter-subject overlap >= 70%. (b) Activation profile 
for the top 10% of voxels within each parcel in (a) across conditions. All code-sensitive 
regions exhibit high activity during the spatial working-memory task, suggesting that 
they belong to the MD system. (c) Parcels defined using the contrast above plus the “not 
hard working-memory task > easy working-memory task” contrast, p=0.5. Only one 
parcel was significant (right hemisphere). (d) Even that parcel’s response profile shows 
high activity in response to the working-memory task, modulated by difficulty, rather 
than a code-specific response. Abbreviations: CP – code problems; SP – sentence 
problems; HardWM – hard working memory task; EasyWM – easy working memory 
task; SR – sentence reading; NR – nonword reading. 
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Supplemental figure 2-8. Whole-brain group-constrained subject-specific analysis (GSS; 
Fedorenko et al, 2010) based on data from Experiment 2. (a) Parcels defined on the group 
level using the code problems > sentence problems contrast, p threshold 0.001, inter-
subject overlap >= 70%. Parcels where the responses to ScratchJr code were stronger than 
responses to all other tasks are labeled and marked in orange; they include parts of early 
visual cortex and parts of the ventral visual stream. (b) Activation profile for the top 10% 
of voxels within each parcel in (a) marked in yellow. All regions exhibit high activity 
during the spatial working-memory task, suggesting that they belong to the MD system. 
(c) Activation profile for the top 10% of voxels within each parcel in (a) marked in orange. 
These fROIs exhibit higher responses to ScratchJr problems compared to a working 
memory task; given that they are located in the visual cortex, we can infer that they 
respond to low-level visual properties of ScratchJr code. A follow-up conjunction analysis 
using the contrast in (a) plus the “not hard working-memory task > easy working-
memory task” contrast, p=0.5, revealed no significant parcels, indicating the lack of code-
selective response. Abbreviations: CP – code problems; SP – sentence problems; HardWM 
– hard working memory task; EasyWM – easy working memory task; SR – sentence 
reading; NR – nonword reading. 
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Supplemental figure 2-9. Spatial correlation analysis of voxel responses within the MD 
system during the Python experiment (CP – code problems and SP – sentence problems) 
with the language localizer conditions for the same participants (SR – sentence reading 
and NR – nonword reading). Each cell shows a correlation between voxel-level activation 
patterns for each condition. Within-condition similarity is estimated by correlating 
activation patterns across independent runs. Code problems correlate with sentence 
problems much more strongly than with sentence reading (β = -0.59, p < 0.001) and with 
nonword reading (β = -0.55, p < 0.001), but substantially weaker than with other code 
problems (β = 0.11, p < 0.001). There was no main effect of hemisphere, but there was an 
interaction between code/sentence  problems and reading conditions (sentence reading: 
β = 0.17, p < 0.001, nonword reading: β = 0.13, p = 0.002), indicating that the correlation 
patterns of code/sentence problems were somewhat less robust in the right hemisphere. 

 
 

 
Supplemental figure 2-10. The effect of programming expertise on code-specific 
response strength within the MD and language system in Experiment 1, Python (A, B) 
and Experiment 2, ScratchJr (C, D). Python expertise was evaluated with a separate one-
hour-long Python assessment (see the paper’s website https://github.com/ALFA-
group/neural-program-comprehension); ScratchJr expertise was estimated with in-
scanner response accuracies. No correlations were significant. 
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2.7.2 Supplemental tables 
 
Supplemental table 2-1. Responses to Python code problems (CP) vs. sentence problems 
(SP) and nonword reading (NR) in individual fROIs within the multiple demand system. 
P values are Bonferroni-corrected for the number of regions. Non-significant values are 
italicized and marked in gray. 

Hemisphere fROI 
Regression 
Term Beta p value 

L postParietal Intercept 4.79 2.00E-20 
  CP>SP 1.86 3.00E-07 
  CP>NR 4.17 1.05E-18 
L midFrontal Intercept 3.39 1.56E-16 
  CP>SP 0.97 0.001 
  CP>NR 2.5 9.62E-14 
L precentral_B Intercept 4.91 1.23E-14 
  CP>SP 0.95 0.002 
  CP>NR 3.38 1.68E-18 
L antParietal Intercept 3.13 4.40E-15 
  CP>SP 1.17 1.07E-06 
  CP>NR 2.54 3.11E-17 
L midFrontalOrb Intercept 1.92 4.73E-09 
  CP>SP 0.91 0.004 
  CP>NR 1.01 8.90E-04 
L medialFrontal Intercept 2.15 2.48E-11 
  CP>SP 0.49 0.16 
  CP>NR 1.41 4.49E-09 
L midParietal Intercept 3.89 2.84E-14 
  CP>SP 1.28 2.52E-05 
  CP>NR 2.95 1.11E-15 
L precentral_A Intercept 5.16 1.27E-12 
  CP>SP 1.03 9.55E-04 
  CP>NR 3.32 1.13E-17 
L supFrontal Intercept 3.8 5.83E-18 
  CP>SP 0.79 0.002 
  CP>NR 2.96 1.14E-19 
L insula Intercept 1.26 6.46E-16 
  CP>SP 0.28 0.141 
  CP>NR 0.66 6.33E-07 
R postParietal Intercept 3.87 4.58E-18 
  CP>SP 2 1.09E-10 
  CP>NR 3.51 1.68E-19 
R midFrontal Intercept 2.65 2.66E-14 
  CP>SP 1.06 2.62E-04 
  CP>NR 1.81 1.90E-09 
R precentral_B Intercept 3.61 6.29E-14 
  CP>SP 1.26 1.61E-05 
  CP>NR 2.43 2.34E-13 
R antParietal Intercept 2.12 5.07E-13 
  CP>SP 1.09 5.91E-05 
  CP>NR 1.61 6.99E-09 
R midFrontalOrb Intercept 1.48 1.71E-05 
  CP>SP 0.87 0.006 
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  CP>NR 0.8 0.016 
R medialFrontal Intercept 1.96 5.46E-11 
  CP>SP 0.58 0.004 
  CP>NR 1.09 2.04E-08 
R midParietal Intercept 2.98 1.53E-11 
  CP>SP 1.31 1.14E-04 
  CP>NR 2.1 2.62E-09 
R precentral_A Intercept 3.62 7.18E-13 
  CP>SP 1.26 1.38E-05 
  CP>NR 2.14 1.34E-11 
R supFrontal Intercept 3.19 1.00E-16 
  CP>SP 1.04 6.87E-04 
  CP>NR 2.57 8.34E-14 
R insula Intercept 1.02 1.12E-09 
  CP>SP 0.33 0.135 
  CP>NR 0.54 4.98E-04 

 
 
Supplemental table 2-2. Responses to ScratchJr code problems (CP) vs. sentence 
problems (SP) and nonword reading (NR) in individual fROIs within the multiple 
demand system. P values are Bonferroni-corrected for the number of regions. Non-
significant values are italicized and marked in gray. 

Hemisphere fROI Regression 
Term 

Beta p value 

L postParietal Intercept 3.45 2.76E-14 
  CP>SP 2.13 1.88E-06 
  CP>NR 2.65 1.33E-08 
L midParietal Intercept 2.63 9.39E-13 
  CP>SP 1.34 1.23E-04 
  CP>NR 1.65 2.75E-06 
L antParietal Intercept 2.42 2.42E-14 
  CP>SP 1.3 0.001 
  CP>NR 1.42 2.75E-04 
L supFrontal Intercept 2.02 4.13E-07 
  CP>SP 0.57 1 
  CP>NR 1.14 0.007 
L precentral_A Intercept 3.17 1.43E-07 
  CP>SP 0.85 1 
  CP>NR 0.8 1 
L precentral_B Intercept 3.15 2.98E-10 
  CP>SP 1.05 0.031 
  CP>NR 1.33 0.002 
L midFrontal Intercept 2.61 2.63E-09 
  CP>SP 1.34 0.01 
  CP>NR 1.5 0.003 
L midFrontalOrb Intercept 1.7 1.23E-05 
  CP>SP 1.18 0.017 
  CP>NR 0.89 0.182 
L insula Intercept 1.18 3.61E-07 
  CP>SP 0.58 0.161 
  CP>NR 0.12 1 
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L medialFrontal Intercept 1.6 9.49E-07 
  CP>SP 0.67 0.416 
  CP>NR 0.47 1 
R postParietal Intercept 3.93 2.11E-16 
  CP>SP 2.89 6.90E-07 
  CP>NR 3.22 6.16E-08 
R midParietal Intercept 3.35 1.75E-09 
  CP>SP 2.17 2.12E-04 
  CP>NR 1.83 0.002 
R antParietal Intercept 2.4 1.43E-15 
  CP>SP 1.59 1.67E-05 
  CP>NR 1.53 3.58E-05 
R supFrontal Intercept 2.32 1.95E-10 
  CP>SP 1.24 0.007 
  CP>NR 1.21 0.009 
R precentral_A Intercept 3.52 8.22E-09 
  CP>SP 2.02 2.26E-06 
  CP>NR 1.27 0.004 
R precentral_B Intercept 3.32 1.99E-10 
  CP>SP 2.15 1.67E-07 
  CP>NR 1.48 2.21E-04 
R midFrontal Intercept 2.91 2.76E-11 
  CP>SP 1.77 4.57E-05 
  CP>NR 1.26 0.007 
R midFrontalOrb Intercept 1.71 3.49E-06 
  CP>SP 1.26 0.006 
  CP>NR 0.34 1 
R insula Intercept 1.19 1.02E-07 
  CP>SP 0.69 0.088 
  CP>NR 0.2 1 
R medialFrontal Intercept 1.57 4.39E-08 
  CP>SP 0.89 0.064 
  CP>NR 0.31 1 
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Chapter 3  
 

The language network & object semantics 
 

Collaborators:  
Yael Benn, Oliver Clark, Zachary Mineroff, Chloe Seikus, Jack Santos Silva, 

Rosemary Varley, Evelina Fedorenko 
 
A related study (including a different set of analyses on the same data) is published as a 
preprint: 
 
Benn*, Y., Ivanova*, A. A., Clark, O., Mineroff, Z., Seikus, C., Silva, J. S., Varley, R. & 
Fedorenko, E. (2021). No evidence for a special role of language in feature-based 
categorization. bioRxiv. https://doi.org/10.1101/2021.03.18.436075v2 
 
 

3.1 Abstract  
 
The relationship between language and thought is the subject of long-standing debate. 
Here, we test a specific aspect of this relationship: engagement of language vs. domain-
general resources in object categorization. We test two hypotheses: 1. If the target 
category is specified with a verbal label, the label gets activated every time a 
categorization decision is made, leading to activity within the language network; 2. 
Categories that involve accessing semantic information about the object (e.g., “dangerous 
animals”) will recruit the language network to a greater extent than categories based on 
a perceptual attribute (e.g., “things that are blue”). In an fMRI study, participants read a 
category label and then viewed a sequence of images; for each image, they had to indicate 
whether it belonged to a given category; the process was repeated for 32 categories. We 
found low responses in the language network during both semantic and perceptual 
categorization, thus disconfirming both hypotheses. The domain-general multiple 
demand network was recruited equally strongly during semantic and perceptual 
categorization, suggesting that the tasks are comparable in difficulty. We conclude that 
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the language network is not recruited for object categorization in general or for semantic 
categorization in particular.  
 

3.2 Introduction  
 
The role of language in mediating or augmenting thought has been subject to much 
discussion (see Chapter 1). According to one view, language processing mechanisms are 
recruited for many cognitive functions, such as math, logic, and thought (e.g., Baldo et 
al., 2010, 2015; Bermúdez, 2007; Bickerton, 1995; Carruthers, 2002; Darwin, 1871; Dennett, 
1994). However, a large body of evidence supports a different view: that language is 
cognitively and neurally independent from the rest of human cognition. This evidence 
includes the lack of activity in the language brain regions during non-linguistic tasks that 
allegedly require language (e.g., Amalric & Dehaene, 2016, 2019; Fedorenko, Behr, et al., 
2011; Ivanova et al., 2021; Monti et al., 2009, 2012), the retained ability of some individuals 
with aphasia to perform such tasks (e.g., Bek et al., 2013; Benn et al., 2013; Siegal & Varley, 
2006; Varley et al., 2005), and variability across cultures in the use of language resources 
during thought (Kim, 2002). Here, we investigate a specific case of putative language-
thought interaction: categorizing images based on a verbal label. 
 
Like other animals, humans can convert rich, multi-dimensional perceptual inputs into a 
latent lower-dimensional structured representation of the world (e.g., Mareschal & Quinn, 
2001; Mervis & Rosch, 1981; Murphy, 2002; Pearce, 1994; E. E. Smith & Medin, 1981; L. B. 
Smith & Heise, 1992; Wasserman et al., 1988). In contrast to other animals, humans 
additionally label individual categories with words—the core building blocks of a 
powerful communication system that allows us to share complex thoughts with one 
another. Even though categorization is a basic cognitive capacity that evolved long before 
language, there is evidence that word learning affects category learning in development 
(e.g., Ferguson & Waxman, 2017; Gershkoff-Stowe et al., 1997; Plunkett et al., 2008; 
Sloutsky & Fisher, 2004; Waxman & Gelman, 2009) and, to some extent, in adulthood 
(Brojde et al., 2011; Lupyan et al., 2007; Lupyan & Casasanto, 2015). Here, we focus not 
on category learning, but on the process of categorization itself. Specifically, we ask: do 
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people recruit language processing mechanisms when grouping objects into categories 
that have been specified via a verbal label? 
 
One account (Luo et al., 2021; Lupyan, 2012; Regier & Kay, 2009) posits that linguistic 
labels get activated during categorization and are used to highlight the features relevant 
for categorization. Evidence in favor of this account comes from studies that show 
impaired categorization performance when access to language resources is reduced, such 
as when performing a verbal interference task (Lupyan, 2009), during transcranial direct 
current stimulation (Lupyan et al., 2012), or in individuals with aphasia (Lupyan & 
Mirman, 2013). Indirect evidence of the involvement of linguistic resources also comes 
from left-lateralized EEG responses during categorization of exemplars across linguistic 
category bounds (Gilbert et al., 2006; cf. K. J. Holmes & Wolff, 2012). 
 
Interpreting some of this evidence is complicated for two reasons. First, an overall 
performance measure cannot disentangle the relative contributions of object 
categorization vs. instruction processing. Given that instructions in categorization tasks 
are often presented via a verbal category label, impaired performance might result from 
participants failing to understand task instructions rather than failing to perform the 
categorization task itself. Second, the language processing regions in the human brain are 
closely adjacent to other, non-language specific regions, meaning that damage resulting 
from a stroke might affect both linguistic and non-linguistic mechanisms. In particular, 
the language network in the left hemisphere, especially in the left frontal cortex, lies 
adjacent to the domain-general multiple demand network, which supports executive 
functions, like working memory and inhibitory control (Assem, Glasser, et al., 2020; 
Duncan, 2010, 2013; Fedorenko, Duncan, et al., 2012; Fedorenko et al., 2013). As a result, 
left hemisphere damage can lead to joint linguistic and domain-general executive deficits 
(Baldo et al., 2010; Gainotti et al., 1986) and left-lateralized activity might, in principle, 
arise from non-linguistic neural mechanisms (K. J. Holmes & Wolff, 2012). 
 
In fact, existing studies provide mixed results with respect to the role of language in 
categorization. Various studies of individuals with aphasia describe general 
categorization impairments (Koemeda-Lutz et al., 1987), deficits for specific category 
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types (e.g., Burger & Muma, 1980; Lupyan & Mirman, 2013), or no deficits at all (Hough, 
1993). Further, variations in the task (such as showing the category label to the participant 
during the entire trial vs. just at the beginning of the trial) significantly affected 
categorization performance in participants with aphasia (Koemeda-Lutz et al., 1987), 
suggesting that task demands may contribute to the observed results. Executive task 
demands might also underlie the effects of transcranial stimulation and verbal 
interference described above (given the close adjacency of language and multiple 
demand regions and the fact that verbal and non-verbal interference tasks are hard to 
match for executive demand). Finally, some aphasia researchers have argued for a 
relationship between categorization difficulties and conceptual-semantic rather than 
purely linguistic impairments (Caramazza et al., 1982; Whitehouse et al., 1978; cf. Le 
Dorze & Nespoulous, 1989), necessitating a clearer distinction between linguistic and 
conceptual processing.  
 
Here, we use functional MRI to test the recruitment of linguistic vs. domain-general 
resources in label-based categorization. Our goal was to test (a) whether linguistic 
resources are active during label-based categorization in general, and (b) whether 
linguistic resources are recruited specifically during semantic categorization, in line with 
accounts implicating language in semantic processing (e.g., Binder et al., 2009; Binder & 
Desai, 2011). To do so, we asked participants to complete the critical categorization task 
along with two localizer experiments: language localizer and multiple demand localizer.  
 
The language localizer is designed to identify brain regions that respond more strongly 
to sentences than to pronounceable but meaningless sequences of letters (“nonwords”). 
A large number of studies has shown that this sentences>nonwords contrast picks out a 
set of regions that are strongly and selectively recruited for language processing, 
including spoken, written, and signed language comprehension, spoken and written 
language production, and inner speech (Amit et al., 2017; Braga et al., 2020; Fedorenko et 
al., 2010, 2011; Giglio et al., 2021; Hu, Small, et al., 2021; Menenti et al., 2011; Scott et al., 
2017; Silbert et al., 2014). These regions also respond to linguistic units at different levels 
of the processing hierarchy, including both phrases and single words (albeit no single 
region is sensitive just to word-level or sentence-level meaning; Blank, Balewski, et al., 
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2016; Blank & Fedorenko, 2020). Therefore, if a certain task requires activating linguistic 
representations, we expect to observe activity in regions identified with the language 
localizer (henceforth called the language network). 
 
The multiple demand localizer identifies a set of regions that respond to a wide range of 
cognitively demanding tasks. Specifically, these regions are sensitive to general cognitive 
effort, exhibiting higher activity when the task is more difficult (Assem, Glasser, et al., 
2020; Duncan, 2010; Fedorenko et al., 2013; Hugdahl et al., 2015). The hard>easy response 
signature in the multiple demand network holds across many diverse tasks, including 
spatial working memory, logic, math, relational reasoning, and cognitive control (Assem, 
Glasser, et al., 2020; Coetzee & Monti, 2018; Fedorenko et al., 2013; Shashidhara, Mitchell, 
et al., 2019). Thus, if a task is cognitively challenging, we expect it to elicit activity in the 
multiple demand network.  
 

 
Figure 3-1. Parcels used to define the language and multiple demand networks. 

 
Examining activation patterns in both the language and the multiple demand networks 
(Figure 3-1) allows us to examine the relative contributions of linguistic and cognitive 
control resources to semantic and perceptual categorization. If linguistic resources are 
engaged during categorization, we would expect an overall high response of the 
language network to categorization conditions. Further, if these regions are specifically 
engaged during semantic processing, the response to semantic categories should exceed 
the response to perceptual categories. If either category type loads specifically onto the 
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domain-general resources, we would expect to see greater responses to that category type 
in the domain-general multiple demand regions. Finally, if a brain network does not 
respond to either semantic or perceptual categorization, we can conclude that this 
network is not recruited for this task. 
 

 
 
Figure 3-2. Sample semantic and perceptual categorization trials. The category label was 
presented at the center of the screen at the beginning of each block (not shown) and was 
additionally shown at the top of the screen during each trial. 

 
 

3.3 Method 
 

3.3.1 Participants 
 
Fourteen neurotypical participants (7 F, age M=22.31, SD=3.51) were recruited from MIT 
and the surrounding community and paid $60 for their participation. All were native 
speakers of English. One participant was left-handed (see Willems et al., 2014, for 
motivation to include left-handers in cognitive neuroscience research) but showed typical 
left-lateralized language activation as determined by the language localizer task 
(described below). All participants gave informed consent in accordance with the 
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requirements of MIT’s Committee On the Use of Humans as Experimental Subjects 
(COUHES). 
 

3.3.2 Design, materials, and procedure 
 
Each participant completed a language localizer task aimed at identifying language-
responsive brain regions (Fedorenko et al., 2010), a spatial working memory (WM) task 
aimed at identifying the multiple demand network (Fedorenko et al., 2013), and the 
critical categorization task. Some participants completed one or more additional tasks for 
unrelated studies. The entire scanning session lasted two hours. 
 
3.3.2.1 Categorization 
 
The critical categorization task was modeled on the study by Lupyan & Mirman (2013). 
We used 32 of the 34 categories used by L&M (dropping ‘BODY PARTS’ and ‘FACIAL 
FEATURES’). Unlike L&M, who used normed color drawings (Rossion & Pourtois, 2004), 
we used high-quality color photographs selected from the Hemera Photo Objects 5000 
and Google Images. For each category, we selected 8-15 targets and 25-27 distractors. 
Distractors included some items which were related to the target category (for example, 
for the category ‘DANGEROUS ANIMALS’, 13 of the 26 distractors were animals that 
were not dangerous, and the rest were not animals, and the category ‘ANIMALS WITH 
STRIPES’ included distractors that were animals without stripes, and inanimate objects 
with stripes). A total of 1,087 unique images were used (any given image appeared as a 
target in 0-2 categories and as a distractor in 0-2 categories). All photographs depicted 
objects on a white background.  
 
During the critical experiment, participants viewed a sequence of images and were asked 
to indicate whether the object depicted in the image belonged to a given category (Figure 
3-2). Each block started with a category label presented for 2s, followed by 12 images 
presented sequentially at the fixed speed of 2s per image. The category label remained on 
the screen to minimize memory demands. Participants were asked to press a button if the 
picture belonged to the target category and not to press anything if it did not. The images 
for each category block were randomly selected from the general set of pictures for that 
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category; the order of images within category blocks was therefore randomized for each 
participant. The number of targets varied across blocks (minimum: 4, maximum: 6) so as 
to minimize the implicit learning of a fixed number of targets, which could have 
incentivized participants to keep track of the total number of targets. Category blocks 
lasted 26s (2s category label presentation + 2s * 12 images), and fixation blocks lasted 14s. 
Each run, consisting of 12 category blocks and 4 fixation blocks, lasted 368s. Each 
participant completed 3 runs. Across the 3 runs, any given participant saw a random 
subset of the 32 categories, with some categories repeating (but never repeating within a 
run; see Supplemental table 3-3 for details). Category order was counterbalanced across 
runs and participants. 
 

3.3.2.2 Language localizer 
 
The language localizer task was the same as that described in Section 2.5.2.3. 
 

3.3.2.3 Multiple demand localizer 
 
The multiple demand localizer task was the same as that described in Section 2.5.2.2. 
Twelve participants completed two runs and two participants completed one run. 
 

3.3.3 fMRI data acquisition 
 
The data acquisition procedure was the same as that described in Section 2.5.3. 
 

3.3.4 fMRI data preprocessing 
 
The preprocessing procedure was the same as that described in Section 2.5.4.  
 

3.3.5 First-level analysis 
 
First-level analysis procedure was the same as that described in Section 2.5.5. For the 
localizer tasks, we modeled entire blocks. For the picture plausibility task, we modeled 
entire blocks (labeling them as semantic categorization vs. perceptual categorization) 
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with the exception of the instruction reading phase, which was modeled as a separate 
condition. 
 

3.3.6 Defining individual functional regions of interest (fROIs) 
 
The procedure for defining language and multiple demand parcels and fROIs is 
described in Section 2.5.6. For the putative SEM>PERC categorization regions, we used 
the same procedure to generate the parcels based on the data collected in this study.  
 

3.3.7 Examining the functional response profiles of fROIs 
 
After defining fROIs in individual participants, we evaluated their responses to the 
conditions of interest by averaging the responses across voxels to get a single value per 
condition per fROI. Responses to conditions used to define the fROI were estimated using 
an across-runs cross-validation procedure, where one run was used to define the fROI 
and the other to estimate the response magnitudes, then the procedure was repeated 
switching which run was used for fROI definition vs. response estimation, and finally the 
estimates were averaged to derive a single value per condition per fROI per participant. 
This cross-validation procedure allows one to use all of the data for defining the fROIs as 
well as for estimating their responses (see Nieto-Castañón & Fedorenko, 2012, for 
discussion), while ensuring the independence of the data used for fROI definition and 
response estimation (Kriegeskorte et al., 2009).  
 
Two participants completed only one run of the multiple demand localizer task; therefore, 
we did not estimate the strength of their responses to the hard and easy multiple demand 
localizer conditions but ensured that the whole-brain activation maps for the hard>easy 
contrast looked as expected. 
 

3.3.8 Statistical analyses 
 
We analyzed our data using mixed effect regression models (Baayen et al., 2008). In all 
models, condition was a fixed effect and participant was a random intercept. The model 
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for the multiple demand network included hemisphere as an additional fixed effect. For 
language and multiple demand network analyses, we also included fROI as a random 
intercept and then ran follow-up analyses on individual fROIs using false discovery rate 
(FDR) correction (Benjamini & Hochberg, 1995) for the number of fROIs in each network. 
Neuroimaging analyses used custom contrasts (see Section 3.7.1 (Appendix) for detailed 
contrast specification). The mixed effect analyses were run using the lmer function from 
the lme4 R package (Bates et al., 2015); statistical significance of the effects was evaluated 
using the lmerTest package (Kuznetsova et al., 2017). The hypotheses-specific contrasts 
were defined using the hypr package (Rabe et al., 2020). 
 
 

3.4 Results 
 

3.4.1 The language network shows low responses to both semantic and 
perceptual categorization 

 
In the language network, response to categorization was not significantly different from 
0 (β=0.28, SE=0.18, p=.128; see Figure 3-3). Response to semantic categories was not 
significantly different from response to perceptual categories (β=0.10, SE=0.09, p=.272) or 
nonword reading (β=0.08, SE=0.09, p=.385), and significantly weaker than responses to 
sentences (β=1.01, SE=.07, p<.001) and instruction reading (β=1.02, SE=.09, p<.001). 
Follow-up analyses in individual language fROIs (Supplemental table 3-1) showed that 
none of them had significantly different responses to semantic and perceptual categories. 
Four fROIs (lMFG, lIFG, lIFGorb, and rIFG) had above-zero responses to semantic 
categorization, but these responses were not significantly different from responses 
during the control nonword reading task. Thus, our results suggest that the language 
network is not involved in either semantic or perceptual categorization in neurotypical 
participants. 
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Figure 3-3. Categorization responses within the language brain network. Top: left 
hemisphere (LH); bottom: right hemisphere (RH). Left: responses averaged across fROIs; 
right: responses in individual fROIs. Abbreviations: Cat. – categorization, IFG – inferior 
frontal gyrus, orb – pars orbitalis, MFG – middle frontal gyrus, AntTemp – anterior 
temporal lobe, PostTemp – posterior temporal lobe, AngG – angular gyrus. Here and 
elsewhere, dots show values for individual participants, and error bars show standard 
error of the mean. 

 

3.4.2 The multiple demand network responds comparably to semantic 
and perceptual categories 

 
The multiple demand network had equally strong responses to semantic and perceptual 
categories (β=0.14, SE=0.09, p=.139; see Figure 3-4), which were significantly above 0 
(β=1.16, SE=0.22, p<.001). Responses to semantic categorization were stronger than 
responses to control conditions from the language localizer task (semantic categorization 
> sentences: β=0.73, SE=0.09, p<.001; semantic categorization > nonwords: β=0.41, 
SE=0.09, p<.001). However, they were weaker than responses to the spatial working 
memory task (β=-1.41, SE=.08, p<.001), indicating that the working memory task was 
more effortful. They were also weaker than responses to the instruction stage of the 
categorization task (β=-0.64, SE=.09, p<.001), indicating that the most cognitively 
demanding stage of the task is the initial category label processing. The responses to 
categorization were stronger in the left hemisphere (β=0.26, SE=0.09, p=.005), but there 
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was no interaction between hemisphere and category type (β=0.02, SE=0.18, p=.895). 
Follow-up analyses in individual fROIs (Supplemental table 3-2) showed that no fROIs 
had a significant difference between semantic and perceptual categorization. Responses 
to categorization overall were significantly above 0 in all fROIs, but weaker than the 
overall responses to the working memory task in almost all fROIs (except left middle 
frontal and middle frontal orbital fROIs). Thus, the MD network was engaged in 
categorization but did not show a preference for either semantic or perceptual categories. 
 

 
Figure 3-4. Categorization responses within the multiple demand brain network. Top: 
left hemisphere (LH); bottom: right hemisphere (RH). Left: responses averaged across 
fROIs; right: responses in individual fROIs. Abbreviations: WM – working memory task, 
Cat. – categorization, ant – anterior, mid – middle, post – posterior, precentral_A – dorsal 
precentral gyrus, precentral_B – ventral precentral gyrus. 

 

3.4.3 Whole-brain analyses reveal no regions responsive specifically to 
semantic categories 

 
We conducted a whole-brain analysis to identify fROIs that might respond more strongly 
to semantic or perceptual categorization but lie outside the language and multiple 
demand fROIs described above. The GSS analysis (see Section 3.3.6) revealed no regions 
that passed the threshold of having significant voxels in at least 60% of participants, 
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indicating that no brain region exhibits a consistent preference for either semantic or 
perceptual categorization (as defined in our study).  
 

3.5 Discussion 
 
In this experiment, we used fMRI to examine responses to label-based object 
categorization in the human brain. The language network exhibited low responses during 
categorization, indicating that linguistic processing mechanisms are not involved in 
object categorization, even when the category label is presented verbally beforehand. 
Moreover, language network responses were low even when the category was semantic, 
i.e., when participants needed to access conceptual information about the objects. This 
result goes against the claim that semantic processing relies on language processing 
mechanisms.  
 
Other results from psycho- and neurolinguistics also support the view that linguistic 
resources do not typically mediate categorization in humans. If access to linguistic 
representations were necessary for categorization, categorizing images would take longer 
than categorizing words; instead, they take approximately the same amount of time 
(Potter & Faulconer, 1975). When asked to match a picture with a label, participants do 
not explicitly generate/rehearse verbal labels in advance unless there is an additional 
memory demand (e.g., if images disappear from the screen) (Pontillo et al., 2015). Our 
work therefore adds to the growing body of evidence for a separation between linguistic 
and visual semantic processing. 
 
That said, many studies have shown that linguistic labels influence categorization 
behavior in infants (e.g., Ferguson & Waxman, 2017; Gershkoff-Stowe et al., 1997; 
Plunkett et al., 2008; Sloutsky & Fisher, 2004; Waxman & Gelman, 2009) and adults (e.g., 
Brojde et al., 2011; Lupyan, 2009; Lupyan et al., 2007; Zettersten & Lupyan, 2020), so the 
relationship between words and categories is clearly an important one. What we are 
showing here is that the mechanisms responsible for language processing are not 
engaged during object categorization, nor are they specifically recruited for semantic 
categorization. It is possible that linguistic labels, once acquired, may influence 
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categorization via other brain systems, e.g., semantic, domain-general, or perceptual. The 
cognitive and neural mechanisms underlying the influence of labels on categorization 
thus remain to be determined (see, e.g., Gliozzi et al., 2009; Ivanova & Hofer, 2020; Luo 
et al., 2021; Lupyan, 2012, for some modeling proposals). And, of course, linguistic 
processing is required to process the category label before performing categorization 
itself, which is reflected in high language network responses during the instruction 
presentation stage.  
 
The multiple demand network responded during categorization, although it showed no 
preference toward either semantic or conceptual categories. The response to 
categorization within the multiple demand network was stronger in the left hemisphere, 
consistent with the view that label-based categorization recruits the left hemisphere more 
strongly (e.g., A. Franklin et al., 2008; Gilbert et al., 2006). This makes the categorization 
task similar to logic and math, which also evoke left-lateralized responses within the 
multiple demand network (Amalric & Dehaene, 2016; Monti et al., 2009, 2012; Pinel & 
Dehaene, 2009). Importantly, our result demonstrates that, just because the function is 
left-lateralized, it is not necessarily related to language, at least not in fully formed brains 
(contra, e.g., Gilbert et al., 2006; see also K. J. Holmes & Wolff, 2012).  
 
Overall, our study shows that object categorization is not a language-dependent task in 
the adult brain, regardless of whether the categorization is made on the basis of semantic 
or perceptual features. Instead, this task relies on the domain-general multiple demand 
system, which supports diverse goal-directed behaviors. Our work provides evidence 
against the view of language as an aid for categorization and suggests that, even when 
people receive information verbally, they convert and store it in a nonverbal format prior 
to performing other cognitive tasks. 
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3.7 Appendix 
 

3.7.1 Mixed-effects models contrast specification  
 
Condition contrasts were designed to test the following null hypotheses.  
 
Language network:   

(1) !"#$%"&'
(

= 0    

(2) 𝑆𝐸𝑀 = 𝑃𝐸𝑅𝐶    (main) 

(3) 𝑆𝐸𝑀 = 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 

(4) 𝑆𝐸𝑀 = 𝑁𝑜𝑛𝑤𝑜𝑟𝑑𝑠 

(5) 𝑆𝐸𝑀 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	𝑟𝑒𝑎𝑑𝑖𝑛𝑔	(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 
 
Multiple demand network: 

(1) !"#$%"&'
(

= 0    

(2) 𝑆𝐸𝑀 = 𝑃𝐸𝑅𝐶    (main) 

(3) 𝐻𝑎𝑟𝑑𝑊𝑀 = 𝐸𝑎𝑠𝑦𝑊𝑀 

(4) 𝑆𝐸𝑀 = )*+,-#$"*./-#
(

	 

(5) 𝑆𝐸𝑀 = 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 

(6) 𝑆𝐸𝑀 = 𝑁𝑜𝑛𝑤𝑜𝑟𝑑𝑠 

(7) 𝑆𝐸𝑀 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	𝑟𝑒𝑎𝑑𝑖𝑛𝑔	(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 
 
SEM – semantic categories; PERC – perceptual categories, HardWM – hard working memory task, 
EasyWM – easy working memory task. 
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3.7.2 Supplemental tables 
 
Supplemental table 3-1. Mixed-effect linear regression results for individual fROIs 
within the language network. P values are FDR-corrected for the number of regions 
(n=12). SEM – semantic categorization, PERC – perceptual categorization, Instruct – 
instruction/category label processing, S – sentence reading (language localizer), N – 
nonword reading (language localizer). 

fROI Hemisphere Regression Term Beta p value 
IFG_orb LH Intercept 0.48 0.031 * 
  PERC-SEM -0.08 0.866  
  S-SEM 1.17 <.001 *** 
  N-SEM 0 0.99  
  Instruct-SEM 0.94 <.001 *** 
IFG LH Intercept 0.94 <.001 *** 
  PERC-SEM -0.11 0.866  
  S-SEM 1.32 <.001 *** 
  N-SEM -0.25 0.505  
  Instruct-SEM 1.51 <.001 *** 
MFG LH Intercept 0.64 0.031 * 
  PERC-SEM 0.1 0.866  
  S-SEM 2.38 <.001 *** 
  N-SEM 0.76 0.248  
  Instruct-SEM 1.66 <.001 *** 
AntTemp LH Intercept -0.04 0.68  
  PERC-SEM -0.11 0.866  
  S-SEM 1.49 <.001 *** 
  N-SEM 0.18 0.505  
  Instruct-SEM 1.09 <.001 *** 
PostTemp LH Intercept 0.31 0.204  
  PERC-SEM 0.06 0.866  
  S-SEM 1.82 <.001 *** 
  N-SEM 0.26 0.505  
  Instruct-SEM 2.1 <.001 *** 
AngG LH Intercept 0.21 0.416  
  PERC-SEM -0.44 0.866  
  S-SEM 0.34 0.207  
  N-SEM -0.54 0.248  
  Instruct-SEM 0.47 0.083  
IFG_orb RH Intercept 0.18 0.416  
  PERC-SEM -0.12 0.866  
  S-SEM 0.59 0.016 * 
  N-SEM 0.15 0.686  
  Instruct-SEM 0.23 0.313  
IFG RH Intercept 0.33 0.126  
  PERC-SEM -0.13 0.866  
  S-SEM 0.48 0.034 * 
  N-SEM -0.1 0.765  
  Instruct-SEM 0.53 0.019 * 
MFG RH Intercept 0.57 0.039 * 
  PERC-SEM 0.08 0.866  
  S-SEM 0.3 0.177  
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  N-SEM 0 0.99  
  Instruct-SEM 0.73 0.001 ** 
AntTemp RH Intercept -0.18 0.392  
  PERC-SEM -0.15 0.866  
  S-SEM 1.21 <.001 *** 
  N-SEM 0.3 0.482  
  Instruct-SEM 1.02 <.001 *** 
PostTemp RH Intercept 0.07 0.68  
  PERC-SEM -0.02 0.927  
  S-SEM 1.1 <.001 *** 
  N-SEM 0.35 0.248  
  Instruct-SEM 1.37 <.001 *** 
AngG RH Intercept -0.09 0.68  
  PERC-SEM -0.25 0.866  
  S-SEM -0.04 0.886  
  N-SEM -0.19 0.686  
  Instruct-SEM 0.58 0.027 * 
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Supplemental table 3-2. Mixed-effect linear regression results for individual fROIs 
within the multiple demand system. P values are FDR-corrected for the number of 
regions (n=20). SEM – semantic categorization, PERC – perceptual categorization, 
Instruct – instruction/category label processing, S – sentence reading (language localizer), 
N – nonword reading (language localizer), H – hard working memory task (multiple 
demand localizer), E – easy working memory task (multiple demand localizer). 

fROI Hemisphere Regression Term Beta p value 
postParietal LH Intercept 1.59 <.001 *** 
  PERC-SEM 0.14 0.901  
  H-E 1.37 <.001 *** 
  HE-SEM 2.62 <.001 *** 
  N-SEM -0.98 0.002 ** 
  S-SEM -1.43 <.001 *** 
  Instruct-SEM 0.52 0.056  
midParietal LH Intercept 1.06 0.003 ** 
  PERC-SEM 0.31 0.901  
  H-E 1.4 0.001 ** 
  HE-SEM 2.38 <.001 *** 
  N-SEM 0.02 0.96  
  S-SEM -0.57 0.169  
  Instruct-SEM 1 0.025 * 
antParietal LH Intercept 1 <.001 *** 
  PERC-SEM 0.38 0.901  
  H-E 1.14 <.001 *** 
  HE-SEM 2.17 <.001 *** 
  N-SEM -0.1 0.873  
  S-SEM -0.64 0.023 * 
  Instruct-SEM 0.54 0.064  
supFrontal LH Intercept 0.86 0.009 ** 
  PERC-SEM 0.13 0.901  
  H-E 0.97 0.007 ** 
  HE-SEM 2.11 <.001 *** 
  N-SEM -0.28 0.55  
  S-SEM -0.4 0.256  
  Instruct-SEM 0.88 0.025 * 
precentral_A LH Intercept 2.41 <.001 *** 
  PERC-SEM 0.24 0.901  
  H-E 1.34 <.001 *** 
  HE-SEM 0.94 0.003 ** 
  N-SEM -0.62 0.155  
  S-SEM -1.03 0.008 ** 
  Instruct-SEM 0.85 0.025 * 
precentral_B LH Intercept 1.46 <.001 *** 
  PERC-SEM 0.04 0.901  
  H-E 1.12 0.001 ** 
  HE-SEM 0.67 0.017 * 
  N-SEM -0.68 0.091  
  S-SEM -0.79 0.021 * 
  Instruct-SEM 0.45 0.18  
midFrontal LH Intercept 1.38 <.001 *** 
  PERC-SEM 0.21 0.901  
  H-E 0.94 0.003 ** 
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  HE-SEM 0.27 0.299  
  N-SEM -0.83 0.032 * 
  S-SEM -1.21 <.001 *** 
  Instruct-SEM 0.38 0.216  
midFrontalOrb LH Intercept 1.21 0.009 ** 
  PERC-SEM 0.12 0.901  
  H-E 1.29 0.002 ** 
  HE-SEM 0.67 0.052  
  N-SEM -0.58 0.225  
  S-SEM -1.04 0.016 * 
  Instruct-SEM 0.13 0.727  
insula LH Intercept 0.89 <.001 *** 
  PERC-SEM -0.04 0.901  
  H-E 0.72 <.001 *** 
  HE-SEM 0.38 0.006 ** 
  N-SEM -0.45 0.021 * 
  S-SEM -0.57 <.001 *** 
  Instruct-SEM 0.43 0.016 * 
medialFrontal LH Intercept 0.99 <.001 *** 
  PERC-SEM -0.03 0.901  
  H-E 0.79 0.001 ** 
  HE-SEM 0.51 0.012 * 
  N-SEM -0.43 0.124  
  S-SEM -0.6 0.016 * 
  Instruct-SEM 0.67 0.016 * 
postParietal RH Intercept 1.24 <.001 *** 
  PERC-SEM 0.19 0.901  
  H-E 1.68 <.001 *** 
  HE-SEM 3.18 <.001 *** 
  N-SEM -0.84 0.068  
  S-SEM -1.14 0.006 ** 
  Instruct-SEM 0.94 0.025 * 
midParietal RH Intercept 0.83 0.006 ** 
  PERC-SEM 0.28 0.901  
  H-E 1.72 <.001 *** 
  HE-SEM 2.14 <.001 *** 
  N-SEM 0.12 0.873  
  S-SEM -0.36 0.375  
  Instruct-SEM 1.16 0.016 * 
antParietal RH Intercept 0.45 0.009 ** 
  PERC-SEM 0.32 0.901  
  H-E 1.23 <.001 *** 
  HE-SEM 2.02 <.001 *** 
  N-SEM 0.06 0.928  
  S-SEM -0.2 0.515  
  Instruct-SEM 0.73 0.029 * 
supFrontal RH Intercept 0.75 0.015 * 
  PERC-SEM 0.11 0.901  
  H-E 1.55 <.001 *** 
  HE-SEM 2.76 <.001 *** 
  N-SEM -0.05 0.948  
  S-SEM -0.2 0.594  
  Instruct-SEM 1.1 0.019 * 
precentral_A RH Intercept 1.59 <.001 *** 
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  PERC-SEM 0.13 0.901  
  H-E 1.4 0.001 ** 
  HE-SEM 1.18 0.002 ** 
  N-SEM -0.4 0.438  
  S-SEM -0.74 0.074  
  Instruct-SEM 0.6 0.157  
precentral_B RH Intercept 1.84 <.001 *** 
  PERC-SEM 0.24 0.901  
  H-E 1.65 <.001 *** 
  HE-SEM 1.23 0.003 ** 
  N-SEM -0.68 0.225  
  S-SEM -1.06 0.023 * 
  Instruct-SEM 0.56 0.216  
midFrontal RH Intercept 0.98 0.009 ** 
  PERC-SEM 0.1 0.901  
  H-E 1.71 <.001 *** 
  HE-SEM 1.03 0.003 ** 
  N-SEM -0.24 0.662  
  S-SEM -0.63 0.105  
  Instruct-SEM 0.46 0.216  
midFrontalOrb RH Intercept 0.94 0.004 ** 
  PERC-SEM -0.06 0.901  
  H-E 1.89 <.001 *** 
  HE-SEM 0.87 0.012 * 
  N-SEM -0.42 0.404  
  S-SEM -0.91 0.023 * 
  Instruct-SEM 0.41 0.272  
insula RH Intercept 0.75 0.001 ** 
  PERC-SEM -0.1 0.901  
  H-E 0.85 <.001 *** 
  HE-SEM 0.32 0.019 * 
  N-SEM -0.39 0.048 * 
  S-SEM -0.52 0.003 ** 
  Instruct-SEM 0.34 0.04 * 
medialFrontal RH Intercept 0.89 <.001 *** 
  PERC-SEM 0.04 0.901  
  H-E 1.23 <.001 *** 
  HE-SEM 0.6 0.006 ** 
  N-SEM -0.36 0.225  
  S-SEM -0.61 0.02 * 
  Instruct-SEM 0.7 0.016 * 
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Supplemental table 3-3. Distribution of category use across participants (i.e., the number 
of times each participant saw each category during the categorization experiment, 
summed across runs). 

  Subject ID 

Condition Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

SEM animals that live in water 1 1 1 0 0 0 1 1 2 1 1 2 2 2 

SEM birds 2 0 1 1 1 3 1 2 1 2 3 1 3 1 

SEM clothes 1 1 1 1 1 0 1 0 0 2 1 0 1 1 

SEM dangerous animals 2 1 2 1 1 0 1 1 1 1 1 0 0 1 

SEM farm animals 1 1 3 2 0 0 2 2 2 1 3 1 2 1 

SEM fruit 1 2 1 1 2 2 0 0 1 1 1 2 1 0 

SEM home appliances 2 2 0 1 1 2 2 1 0 1 0 2 0 1 

SEM insects 2 2 1 3 1 2 1 2 1 2 1 2 1 2 

SEM musical instruments 0 1 1 0 3 0 2 1 2 2 2 1 1 1 

SEM 
non food things found in the 
kitchen 2 1 0 0 2 2 0 2 2 1 1 2 0 1 

SEM objects found in the laundry room 1 1 0 2 1 1 1 2 1 1 1 0 1 1 

SEM objects that hold water 0 1 2 2 0 1 2 0 0 1 1 1 2 2 

SEM objects used for for transportation 1 2 1 1 1 1 0 1 3 1 0 0 1 1 

SEM things that fly 1 2 3 1 0 1 2 2 1 0 1 2 0 2 

SEM tools 1 0 0 1 2 2 2 0 0 0 0 1 0 0 

SEM vegetables 0 0 1 0 2 1 0 1 1 1 1 1 3 1 

PERC animals with stripes 2 1 2 2 0 1 2 0 1 2 0 1 0 2 

PERC long thin objects 0 0 2 2 1 1 1 1 0 2 2 1 2 2 

SEM small objects 1 2 0 1 2 1 0 1 1 1 1 0 1 1 

PERC things made of wood 1 1 1 3 2 1 2 1 0 1 2 2 0 0 

PERC things that are blue 2 1 1 1 1 1 1 1 0 0 1 0 1 1 

PERC things that are brown 1 2 1 0 3 1 2 2 2 1 2 0 1 1 

PERC things that are green 1 0 1 1 0 2 1 1 2 2 1 1 0 1 

PERC things that are orange 2 1 2 2 1 2 0 1 1 1 0 2 2 1 

PERC things that are red 1 1 1 1 0 1 1 1 2 0 2 1 2 1 

PERC things that are round 1 1 1 1 1 1 0 1 3 1 2 0 1 1 

SEM things that are soft 0 0 2 0 2 1 1 2 1 0 2 2 1 2 

SEM things that are very large 1 1 1 2 1 2 1 1 1 1 1 2 3 0 

PERC things that are white 3 2 1 1 1 0 1 0 1 1 0 3 0 2 

PERC things that are yellow 2 3 0 0 0 1 2 2 1 3 1 1 2 0 

SEM things with doors 0 1 1 0 1 1 2 2 1 1 0 1 2 3 

SEM things with handles 0 1 1 1 2 1 1 1 1 1 1 1 0 0 
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Chapter 4  
 

The language network & event semantics 
 

Collaborators:  
Zachary Mineroff, Vitor Zimmerer, Nancy Kanwisher, Rosemary Varley, 

Evelina Fedorenko 
 
This chapter has been published as a journal article in Neurobiology of Language (under a 
CC BY 4.0 license):  
 
Ivanova, A. A., Mineroff, Z., Zimmerer, V., Kanwisher, N., Varley, R., & Fedorenko, E. 
(2021). The language network is recruited but not required for nonverbal event semantics. 
Neurobiology of Language, 2(2), 176-201. https://doi.org/10.1162/nol_a_00030   
 
It is reproduced here with slight alterations. 
 
 

4.1 Abstract  
 
The ability to combine individual concepts of objects, properties, and actions into 
complex representations of the world is often associated with language. Yet 
combinatorial event-level representations can also be constructed from nonverbal input, 
such as visual scenes. Here, we test whether the language network in the human brain is 
involved in and necessary for semantic processing of events presented nonverbally. In 
Experiment 1, we scanned participants with fMRI while they performed a semantic 
plausibility judgment task vs. a difficult perceptual control task on sentences and line 
drawings that describe/depict simple agent-patient interactions. We found that the 
language network responded robustly during the semantic task performed on both 
sentences and pictures (although its response to sentences was stronger). Thus, language 
regions in healthy adults are engaged during a semantic task performed on pictorial 
depictions of events. But is this engagement necessary? In Experiment 2, we tested two 
individuals with global aphasia, who have sustained massive damage to perisylvian 
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language areas and display severe language difficulties, against a group of age-matched 
control participants. Individuals with aphasia were severely impaired on the task of 
matching sentences to pictures. However, they performed close to controls in assessing 
the plausibility of pictorial depictions of agent-patient interactions. Overall, our results 
indicate that the left fronto-temporal language network is recruited but not necessary for 
semantic processing of nonverbally presented events. 
 

4.2 Introduction 
 
Many thinkers have argued for an intimate relationship between language and thought, 
in fields as diverse as philosophy (Carruthers, 2002; Davidson, 1975; Wittgenstein, 1961), 
psychology (Sokolov, 1972; Vygotsky, 1934; Watson, 1920), linguistics (Berwick & 
Chomsky, 2016; Bickerton, 1990; Chomsky, 2007; Hinzen, 2013; Jackendoff, 1996), and 
artificial intelligence (T. B. Brown et al., 2020; Goldstein & Papert, 1977; Turing, 1950; 
Winograd, 1976). According to such accounts, language enables us to access our vast 
knowledge of objects, properties, and actions — often referred to as semantic knowledge 
— and flexibly combine individual semantic units to produce complex situation-specific 
representations called ‘thoughts’. The hypothesis that language is critical for thought 
crucially depends on whether or not language is essential for combinatorial semantic 
processing: if we can access and combine individual concepts in the absence of language, 
that would constitute evidence against the necessity of language in forming novel 
thoughts. Here, we test the link between language and thought by examining the role of 
the language network in a nonverbal combinatorial semantic task. 
 
Recent evidence from neuroscience suggests that language processing is largely distinct 
from other aspects of cognition (Fedorenko & Blank, 2020; Fedorenko & Varley, 2016). A 
network of left-lateralized frontal and temporal brain regions (here referred to as ‘the 
language network’) has been found to respond to written/spoken/signed words and 
sentences, but not to mental arithmetic, music perception, executive function tasks, 
action/gesture perception, or computer programming (Amalric & Dehaene, 2019; X. 
Chen et al., 2021; Fedorenko, Bers, et al., 2011; Ivanova et al., 2020; Jouravlev et al., 2019; 
Liu et al., 2020; MacSweeney et al., 2002; Monti et al., 2009, 2012; Pritchett et al., 2018). 
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Similarly, investigations of patients with profound disruption of language capacity 
(global aphasia) have shown that some of these individuals can solve arithmetic and logic 
problems, appreciate and create music, and think about others’ thoughts in spite of their 
language impairment (Basso & Capitani, 1985; Luria et al., 1965; Varley et al., 2005; Varley 
& Siegal, 2000), providing converging evidence that language is subserved by domain-
specific cognitive mechanisms. 
 
Despite this significant progress in dissociating linguistic and non-linguistic processing, 
the role of the language network in nonverbal semantics remains unclear. Semantics is 
often considered to be an integral part of linguistic processing (Altshuler et al., 2019; 
Binder et al., 2009; Fillmore, 2006; Milberg & Blumstein, 1981; Pinker & Levin, 1991; 
Talmy, 2000): each content word is linked to an underlying semantic representation 
(“lexical semantics”), which then combine to form phrase- and sentence-level meanings 
(“combinatorial semantics”). This tight integration between language and semantics 
suggests that the frontal and temporal language regions may play an important role in 
storing and processing semantic information (see Hasson et al., 2015 for general 
arguments against the separation of storage and processing/computation in the brain). 
However, many semantic representations can also be activated by nonverbal input (e.g., 
the concept CAT can be evoked not only by the word “cat”, but also by a picture / sight 
of a cat), suggesting that language does not necessarily have a privileged role in semantic 
processing. In this work, we ask whether the fronto-temporal language network supports 
semantic processing for both verbal and nonverbal stimuli or whether it is only engaged 
in the semantic processing of verbal input. 
 
A large body of work has aimed to address the role of the language network in nonverbal 
semantics; however, different sources of evidence have produced conflicting results. 
Neuroimaging studies that explicitly compared verbal and nonverbal semantic 
processing of objects (e.g., Devereux et al., 2013; Fairhall & Caramazza, 2013; Handjaras 
et al., 2017; Shinkareva et al., 2011; Vandenberghe et al., 1996; Visser et al., 2012), actions 
(e.g., Wurm & Caramazza, 2019), and events (Baldassano et al., 2018; Z. Hu et al., 2019; 
Jouen et al., 2015; Thierry & Price, 2006) often reported overlapping activation in left-
lateralized frontal and temporal areas, which may reflect the engagement of the language 
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network. In contrast, neuropsychology studies have often reported dissociations between 
linguistic and semantic deficits in patients with aphasia (e.g., Antonucci & Reilly, 2008; 
Chertkow et al., 1997; Dickey & Warren, 2015; Jefferies & Lambon Ralph, 2006; Saygin et 
al., 2004; cf. Saygın et al., 2003), suggesting that verbal and nonverbal semantic processes 
rely on distinct neural circuits. Both groups of studies have limitations that make it 
difficult to reconcile their findings. The neuroimaging studies have typically relied on 
group analyses — an approach known to overestimate overlap in cases of nearby 
functionally distinct areas (Nieto-Castañón & Fedorenko, 2012) — and/or do not report 
effect sizes, which are critical for interpreting the functional profiles of the regions in 
question (a region that responds similarly strongly to verbal and nonverbal semantic 
tasks plausibly supports computations that are different from a region that responds to 
both, but shows a 2-3 times stronger response to verbal semantics; see, e.g., G. Chen et al. 
(2017) for discussion). Meanwhile, the aphasia studies have typically investigated cases 
where only some of the language regions were damaged, leaving open the possibility that 
the intact portions of the language network were still contributing to nonverbal semantic 
processing. Further, neuroimaging and aphasia studies typically rely on different 
experimental paradigms, making it challenging to directly compare their results. 
 
It should also be noted that few neuropsychological studies (with the exception of 
Dresang et al., 2019; Marshall et al., 1993) have investigated the processing of verbal and 
nonverbal events (as opposed to individual objects or actions). Constructing event-level 
mental representations requires object and action processing but is not reducible to them 
(Dresang et al., 2019) and therefore may engage additional cognitive operations. In 
particular, to understand an event, we must identify relations between participating 
entities and assign them thematic roles (Estes et al., 2011). This process of identifying who 
did what to whom has traditionally been considered a hallmark of the language system 
(Fillmore, 1968; Gruber, 1965). Thus, if any aspect of semantic processing requires 
language, event understanding would seem to be one of the strongest candidates. 
 
Event processing has perhaps been most extensively investigated in EEG research, where 
a number of studies have reported that semantic violations in visually presented 
scenes/events evoke the N400 response, a marker of semantic processing (Coco et al., 
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2020; Cohn, 2020; Jouen et al., 2019; Proverbio & Riva, 2009; Sitnikova et al., 2008; Võ & 
Wolfe, 2013; West & Holcomb, 2002; see Kutas & Federmeier, 2011, for a review), similarly 
to semantic violations in sentences, where the N400 component was originally discovered 
(Kutas & Hillyard, 1980). The EEG results have been taken to suggest that linguistic and 
visual semantic processing rely on a shared mechanism. However, because the neural 
generators of the N400 remain debated (Lau et al., 2008, 2016; Matsumoto et al., 2005; Zhu 
et al., 2019), this evidence does not definitively demonstrate the involvement of the 
language network in visual event processing. 
 
Here, we synergistically combine neuroimaging and neuropsychological evidence to ask 
whether the language network is engaged during and/or necessary for nonverbal event 
semantics. We focus on the understanding of agent-patient relations (“who did what to 
whom”) in visually presented scenes. Identification of thematic relations is critical to 
understanding and generating sentences (Carlson & Tanenhaus, 1988; Fillmore, 2002; 
Jackendoff, 1987), but “agent” and “patient” are not exclusively linguistic notions: they 
likely constitute part of humans’ ‘core knowledge’ (Rissman & Majid, 2019; Spelke & 
Kinzler, 2007; Strickland, 2017; L. Wagner & Lakusta, 2009) and are integral to visual 
event processing (Cohn & Paczynski, 2013; Hafri et al., 2018). Investigating the role of the 
language network in processing agent-patient relations therefore constitutes an 
important test of the relationship between language and combinatorial event semantics. 
 
We used two kinds of evidence in our study: (1) fMRI in neurotypical participants, and 
(2) behavioral data from two individuals with global aphasia and a group of age-matched 
healthy controls. All participants were asked to evaluate the plausibility of events, 
presented either as sentences (neurotypicals only) or pictures. To ensure that participants 
could not rely on low-level visual cues when evaluating picture plausibility, we used line 
drawings rather than photographs. The line drawings were highly controlled: each 
picture pair depicted two animate participants engaged in a certain interaction, but the 
participants’ roles in this interaction were either plausible (e.g., a cop arresting a criminal) 
or implausible (e.g., a criminal arresting a cop). This manipulation allowed us to ensure 
that participants could not infer picture plausibility based solely on the attributes of a 
single participant; rather, they had to evaluate the event as a whole. 
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To foreshadow our results, we find that language-responsive brain areas in neurotypical 
participants respond during the plausibility task for both sentences and pictures 
(although the responses are lower for pictures). However, individuals with global 
aphasia, who sustained severe damage to language areas, perform well on the picture 
plausibility task, suggesting that the language network is not required for constructing 
combinatorial representations of visually depicted events. 
 
 

4.3 Method 
 

4.3.1 Experiment 1: Is the language network active during a nonverbal 
event semantics task? 

 

4.3.1.1 Overview 
 
In the first experiment, we presented neurotypical participants with sentences and 
pictures describing/depicting agent-patient interactions that were either plausible or 
implausible (Figure 4-1), while the participants were undergoing an fMRI scan. 
Participants performed a semantic judgment task on the sentences and pictures, as well 
as a difficulty-matched low-level perceptual control task on the same stimuli, in a 2x2 
blocked design. In separate blocks, participants were instructed to indicate either i) 
whether the stimulus was plausible or implausible (the semantic task) or ii) whether the 
stimulus was moving to the left or right (the perceptual task). The language regions in 
each participant was identified using a separate functional language localizer task 
(sentences > nonwords contrast; Fedorenko et al., 2010). We then measured the response 
of those regions to sentences and pictures during the semantic and perceptual tasks. 
 

4.3.1.2 Participants 
 
Twenty-four participants took part in the fMRI experiment (11 female, mean age = 25 
years, SD = 5.2). The participants were recruited from MIT and the surrounding 
Cambridge/Boston, MA, community and paid for their participation. All were native 
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speakers of English, had normal hearing and vision, and no history of language 
impairment. All were right-handed (as assessed by Oldfield’s (1971) handedness 
questionnaire, or self-report). Two participants had low behavioral accuracy scores 
(<60%), and one had right-lateralized language regions (as evaluated by the language 
localizer task; see below); they were excluded from the analyses, which were therefore 
based on data from 21 participants. The protocol for the study was approved by MIT’s 
Committee on the Use of Humans as Experimental Subjects (COUHES). All participants 
gave written informed consent in accordance with protocol requirements. 
 

 
Figure 4-1. Sample stimuli used in the experiment. For both sentences and pictures, 
participants were required to perform either a semantic plausibility judgment task 
(“Plausible or implausible?”) or a control perceptual task (“Moving left or right?”). The 
full set of materials is available at https://osf.io/gsudr/. 

 

4.3.1.3 Design, materials, and procedure 
 
All participants completed a language localizer task aimed at identifying language-
responsive brain regions (Fedorenko et al., 2010) and the critical picture/sentence 
plausibility task.  
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The language localizer task is described in Section 2.5.2.3. 
 
The picture plausibility task included two types of stimuli: (1) black-and-white line 
drawings depicting plausible and implausible agent-patient interactions (created by an 
artist for this study), and (2) simple sentences describing the same interactions. Sample 
stimuli are shown in Figure 4-1, and a full list of materials is available on the project’s 
website (https://osf.io/gsudr/). Forty plausible-implausible pairs of pictures, and forty 
plausible-implausible pairs of corresponding sentences were used. The full set of 
materials was divided into two lists, such that List 1 used plausible pictures and 
implausible sentences for odd-numbered items, and implausible pictures and plausible 
sentences for even-numbered items, and List 2 did the opposite. Thus, each list contained 
either a picture or a sentence version of any given event. Stimuli were presented in a 
blocked design (each block included either pictures or sentences) and were moving either 
to the right or to the left for the duration of stimulus presentation. At the beginning of 
each block, participants were told which task they would have to perform next: semantic 
or perceptual. The semantic task required them to indicate whether the 
depicted/described event is plausible or implausible by pressing one of two buttons. The 
perceptual task required them to indicate the direction of stimulus movement (right or 
left). To ensure that participants always perform the right task, a reminder about the task 
and the response buttons (“plausible=1/implausible=2”, or “moving right=1/left=2”) 
was visible in the lower right-hand corner of the screen for the duration of the block. Each 
stimulus (a picture or a sentence) was presented for 1.5 s, with 0.5 s intervals between 
stimuli. Each block began with a 2-second instruction screen to indicate the task, and 
consisted of 10 trials, for a total duration of 22 s. Trials were presented with a constraint 
that the same response (plausible/implausible in the semantic condition, or right/left in 
the perceptual condition) did not occur more than 3 times in a row. Each run consisted of 
3 fixation blocks and 8 experimental blocks (2 per condition: semantic task – pictures, 
semantic task – sentences, perceptual task – pictures, perceptual task - sentences) and 
lasted 242 s (4 min 2 s). The order of conditions was palindromic and varied across runs 
and participants. Each participant completed 2 runs.  
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4.3.1.4 fMRI data acquisition 
 
The data acquisition procedure was the same as that described in Section 2.5.3. 
 

4.3.1.5 fMRI data preprocessing 
 
The preprocessing procedure was the same as that described in Section 2.5.4.  
 

4.3.1.6 First-level analysis 
 
First-level analysis procedure was the same as that described in Section 2.5.5.  For the 
language localizer, we modeled entire blocks (sentence reading and nonword reading). 
For the picture plausibility task, we modeled entire blocks (sentences, semantic task; 
pictures, semantic task; sentences, perceptual task; pictures, perceptual task) with the 
exception of the instruction reading phase, which was modeled as a separate condition. 
 

4.3.1.7 Defining functional regions of interest (fROIs) 
 
The procedure for defining language parcels and fROIs is described in Section 2.5.6. Note 
that the multiple demand network was not considered in this study. 
 

4.3.1.8 Examining the functional response profiles of the language fROIs 
 
fROI response estimation procedure was the same as that described in Section 3.3.7. 
 

4.3.1.9 Statistical analyses 
 
To analyze fROI responses, we ran a linear mixed-effect regression model with two fixed 
effects (stimulus type and task) and two random effects (participant and fROI). We used 
sum coding for both stimulus type and task. Planned follow-up comparisons examined 
response to sentences and pictures during the semantic task within each fROI; the results 
were FDR-corrected (Benjamini & Hochberg, 1995) for the number of regions. The 
formula used for the main mixed linear effects model was EffectSize ~ StimType*Task + 



 
 
 

101 

(1|fROI) + (1|Participant). The formula used for the follow-up comparisons was EffectSize 
~ StimType*Task + (1|Participant). The analysis was run using the lmer function from the 
lme4 R package (Bates et al., 2015); statistical significance of the effects was evaluated 
using the lmerTest package (Kuznetsova et al., 2017). 
 
To analyze differences in response times (RT) and accuracy across conditions, we ran a 
linear (for RT) and logistic (for accuracy) mixed effect regression models that aimed to 
mirror the structure of the mixed effect models in the neuroimaging analyses. Specifically, 
the behavioral models used task and stimulus type as fixed effects (with sum contrast 
coding) and participant and item as random intercepts. The formulae were Accuracy/RT 
~ StimType*Task + (1|fROI) + (1|Participant).  
 

4.3.2 Experiment 2: Is the language network required for a nonverbal 
event semantics task? 

 

4.3.2.1 Overview 
 
In the second experiment, we examined two individuals with global aphasia, a disorder 
characterized by severe linguistic impairments, together with a group of age-matched 
controls. The participants performed two critical tasks: the picture plausibility judgment 
task (identical to the “picture, semantic” condition from Experiment 1) and the sentence-
picture matching task based on the same set of pictures. 
 

4.3.2.2 Participants 
 
Two participants with global aphasia, S.A. and P.R., took part in the study. Both had large 
lesions that had damaged the left inferior frontal gyrus, the inferior parietal lobe 
(supramarginal and angular gyri) and the superior temporal lobe. At the time of testing, 
they were 68 and 70 years old respectively. S.A. was 22 years 5 months post-onset of his 
neurological condition, and P.R. was 14 years 7 months post-onset. S.A. had a subdural 
empyema in the left sylvian fissure, with associated meningitis that led to a secondary 
vascular lesion in left middle cerebral artery territory. P.R. also had a vascular lesion in 
left middle cerebral artery territory.  



 
 
 

102 

 
Both participants were male, native English speakers, and did not present with visual 
impairments. S.A. was pre-morbidly right-handed; P.R. was pre-morbidly left-handed, 
but a left hemisphere lesion that resulted in profound aphasia indicated that he, like most 
left-handers, was left-hemisphere dominant for language (Pujol et al., 1999). Both 
individuals were classified as severely agrammatic (Table 4-2), but their non-linguistic 
cognitive skills were mostly spared (Table 4-3). They performed the semantic task and 
the sentence-picture matching task with a 7-months period between the two.  
 
We also tested two sets of neurotypical control participants, one for the semantic task and 
one for the language task. The semantic task control participants were 12 healthy 
participants (7 females) ranging in age from 58 to 78 years (mean age 65.5 years). The 
language task control participants were 12 healthy participants (5 females) ranging in age 
from 58 to 78 years (mean age 64.7 years). None of the healthy participants had a history 
of speech or language disorders, neurological diseases or reading impairments. All were 
native English speakers, and had normal, or corrected-to-normal, vision.  
 
Participants undertook the experiments individually, in a quiet room. An experimenter 
was present throughout the testing session. The stimuli were presented on an Acer 
Extensa 5630G laptop, with the experiment built using DMDX (Forster & Forster, 2003). 
Ethics approval was granted by the UCL Research Ethics Committee (LC/2013/05). All 
participants provided informed consent prior to taking part in the study. 
 

4.3.2.3 Semantic Task: Picture plausibility judgments 
 
The same picture stimuli were used as those in Experiment 1 (see Figure 4-1), plus one 
additional plausible-implausible pair of pictures (which was omitted from the fMRI 
experiment to have a total number of stimuli be divisible by four, for the purposes of 
grouping materials into blocks and runs), for a total of 82 pictures (41 plausible-
implausible pairs). Four of the 82 pictures were used as training items (see below).  
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The stimuli were divided into 2 sets, with an equal number of plausible and implausible 
pictures; each plausible-implausible pair was split across the 2 sets, to minimize 
repetition of the same event participants within a set. The order of the trials was 
randomized within each set, so that each participant saw the pictures in a different 
sequence. A self-timed break was placed between the two sets. 
 
Prior to the experiment, participants were shown two pairs of pictures, which acted as 
training items. The pairs consisted of one plausible and one implausible event. They were 
given clear instructions to focus on the relationship between the two characters and assess 
whether they thought the interaction was plausible, in adherence with normal 
expectations, or implausible, at odds with expectations. They were asked to press a green 
tick (the left button on the mouse) if they thought the picture depicted a plausible event, 
and a red cross (the right button on the mouse) if they thought the picture depicted an 
implausible event. They were asked to do so as quickly and accurately as possible. The 
pictures appeared for a maximum of 8 seconds, with the inter-stimulus interval of 2 
seconds. Accuracies and reaction times were recorded. Participants had the opportunity 
to ask any questions, and the instructions for participants with aphasia were 
supplemented by gestures to aid comprehension of the task. Participants had to indicate 
that they understood the task prior to starting. 
 

4.3.2.4 Language Task: Sentence-picture matching 
 
The same 82 pictures were used as in the plausibility judgment experiment. In this task, 
a sentence was presented below each picture that either described the picture correctly 
(e.g., “the cop is arresting a criminal” for the first sample picture in Figure 4-1) or had the 
agent and patient switched (“the criminal is arresting the cop”). Simple active subject-
verb-object sentences were used. Combining each picture with a matching and a 
mismatching sentence resulted in 164 trials in total. 
 
For the control participants, the trials were split into two sets of 82, with an equal number 
of plausible and implausible pictures, as well as an equal number of matches and 
mismatches in each set. In order to avoid tiring the participants with aphasia, the 
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experiment was administered across two testing sessions each consisting of two sets of 
41 stimuli and occurring within the same week. For both groups, the order of the trials 
was randomized separately for each participant, and no pictures from the same pair (e.g., 
an event involving a cop and a criminal) appeared in a row. A self-timed break was 
placed between the two sets. 
 
Prior to the experiment, participants were told that they would see a series of pictures 
with accompanying sentences, and their task was to decide whether the sentence 
matched the depicted event. They were asked to press a green tick (the left button on the 
mouse) if they thought the sentence matched the picture, and a red cross (the right button 
on the mouse) if they thought the sentence did not match the picture. They were asked to 
do so as quickly and accurately as possible. The picture/sentence combinations appeared 
for a maximum of 25 seconds, with the inter-stimulus interval of 2 seconds. Accuracies 
and reaction times were recorded. As in the critical task, participants had the opportunity 
to ask any questions, and the instructions for participants with aphasia were 
supplemented by gestures. 
 

4.3.2.5 Data analysis 
 
We used exact binomial test to test whether patients’ performance on either task was 
significantly above chance, as well as the Crawford-Howell (1998) test for dissociation to 
compare patient performance relative to controls across the two tasks. We excluded all 
items with reaction times and/or accuracies outside 3 standard deviations of the control 
group mean (4 items for the semantic task and 11 items for the sentence-picture matching 
task).   
 

4.3.2.6 Estimating the damage to the language network in patients with aphasia 
 
To visualize the extent of the damage to the language network, we combined available 
structural MRI of one patient with aphasia (P.R.) with a probabilistic activation overlap 
map of the language network. The map was created by overlaying thresholded 
individual activation maps for the language localizer contrast (sentences > nonwords, as 
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described in Experiment 1) in 220 healthy participants. The maps were thresholded at the 
p<0.001 whole-brain uncorrected level, binarized, and overlaid in the common space, so 
that each voxel contains information on the proportion of participants showing a 
significant language localizer effect (see Woolgar, Duncan, Manes & Fedorenko (2018b) 
for more details). The map can be downloaded from the project’s website 
(https://osf.io/gsudr/).  
 
 

4.4 Results 
 

4.4.1 Experiment 1: Is the language network active during a nonverbal 
event semantics task? 

 

4.4.1.1 Behavioral Results 
 
All participants were engaged during the task: the overall response rate was 91.7% 
(sentence semantic - 89.9%, sentence perceptual - 91.6%, picture semantic - 93.6%, picture 
perceptual - 91.9%). Average response times were 1.27 s (SD = 0.46) for the semantic 
sentence task, 1.16 s (SD = 0.38) for the perceptual sentence task, 1.22 s (SD = 0.35) for the 
semantic picture task, and 1.19 (SD = 0.36) for the perceptual picture task. A linear mixed 
effect model with task and stimulus type as fixed effects and participant and item number as 
random intercepts showed a small main effect of task (semantic > perceptual; β = .06, p 
< .001), no main effect of stimulus type (β =0.02, p = 0.287), and no interaction between 
task and stimulus type (β = .03, p = 0.359). 
 
Average accuracies were 0.81 for the semantic sentence task, 0.79 for the perceptual 
sentence task, 0.75 for the semantic picture task, and 0.75 for the perceptual picture task. 
A logistic mixed effect model with the same structure as the linear RT model above 
showed no significant effects of either task (β = .09, p = 0.198) or stimulus type (β = .12, p 
= 0.101), and no interaction between them (β = .04, p = 0.759). Due to a technical error, 
accuracy data for 14 participants were only recorded for one of the two runs. 
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Figure 4-2. BOLD response during the four experimental conditions within (A) the 
language network as a whole and (B) each of the six language fROIs. The fROI labels 
correspond to approximate anatomical locations: IFGorb – the orbital portion of the left 
inferior frontal gyrus; IFG – left inferior frontal gyrus; MFG – left middle frontal gyrus; 
AntTemp – left anterior temporal cortex; PostTemp – left posterior temporal cortex; AngG 
– left angular gyrus. Within each parcel, the responses to the critical experiment 
conditions are extracted from the top 10% most language-responsive voxels (selected in 
each of the 21 individuals separately). Error bars indicate standard error of the mean 
across participants; dots indicate individual participants’ responses. 

 

4.4.1.2 Neuroimaging Results 
 
Although diverse non-linguistic tasks have been previously shown not to engage the 
language network (Fedorenko & Varley, 2016), we here found that the language regions 
responded more strongly during the semantic task on both sentences and pictures 
compared to the perceptual control task (Figure 4-2). A linear mixed effect model with 
task and stimulus type as fixed effects and participant and fROI as random effect intercepts 
showed a significant effect of task (semantic > perceptual, β = 0.93, p < .001), stimulus 
type (sentences > pictures, β = 0.23, p = 0.018), and an interaction between them (β = .43, 
p = 0.025). These results demonstrate that the language network responds to the semantic 
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task performed on both sentences and pictures, although this task effect is stronger for 
sentences. 
 
Table 4-1. Regression model terms for fROI-based statistical analyses. The p-values are 
FDR-corrected for the number of regions (n=6). Significant terms are highlighted in bold. 
The fROI labels correspond to the approximate anatomical locations: IFGorb – the orbital 
portion of the left inferior frontal gyrus; IFG – left inferior frontal gyrus; MFG – left 
middle frontal gyrus; AntTemp – left anterior temporal cortex; PostTemp – left posterior 
temporal cortex; AngG – left angular gyrus. 

ROI Regression Term Beta p-value 
IFGorb Intercept 0.33 0.104 
 Stimulus (Sent>Pic) 0.34 0.215 
 Task (Sem>Perc) 1.25 <0.001 
 Stimulus:Task 0.54 0.283 
IFG Intercept 1.33 <0.001 
 Stimulus (Sent>Pic) 0.27 0.259 
 Task (Sem>Perc) 1.12 <0.001 
 Stimulus:Task 0.57 0.28 
MFG Intercept 0.98 0.002 
 Stimulus (Sent>Pic) 0.2 0.259 
 Task (Sem>Perc) 0.73 <0.001 
 Stimulus:Task 0.74 0.231 
AntTemp Intercept 0.22 0.104 
 Stimulus (Sent>Pic) 0.49 0.002 
 Task (Sem>Perc) 0.6 <0.001 
 Stimulus:Task 0.41 0.24 
PostTemp Intercept 0.5 <0.001 
 Stimulus (Sent>Pic) 0.43 0.006 
 Task (Sem>Perc) 0.68 <0.001 
 Stimulus:Task 0.44 0.24 
AngG Intercept 1.13 0.002 
 Stimulus (Sent>Pic) -0.35 0.215 
 Task (Sem>Perc) 1.16 <0.001 
 Stimulus:Task -0.11 0.823 

 
 
To investigate individual brain regions comprising the language network, we conducted 
follow-up analyses on individual fROIs’ activity (FDR-corrected for the number of 
regions) (Figure 4-2, B). These revealed a significant semantic > perceptual task effect in 
all fROIs (Table 4-1). The sentences > pictures stimulus type effect was observed in two 
fROIs, located in anterior and posterior left temporal lobe. The interaction between task 
and stimulus type was not significant in any fROI, although, numerically, responses to 
sentences during the semantic task were stronger than responses to any other condition 
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in all except the left angular gyrus fROI. We conclude that sensitivity to the semantic task 
is a general property of all regions in the language network rather than an effect driven 
by a subset of regions. 
 
To facilitate the comparison of our results with prior neuroimaging studies, we also 
performed a random effects whole-brain group analysis (Supplemental figure 4-1), 
which yielded results similar to the fROI-based analyses described above. Specifically, 
we found that the semantic > perceptual contrast for both sentences and pictures activates 
left-lateralized frontal and temporal regions that overlap with the language parcels (used 
to constrain the definition of individual language fROIs). The extent of semantics-evoked 
activation in the left lateral temporal areas was weaker for pictures than sentences (the 
opposite was true on the ventral surface of the left temporal lobe). Note, however, that 
these results should be interpreted with caution, since group analyses might conflate 
functionally distinct regions that are anatomically close (Nieto-Castañón & Fedorenko, 
2012), especially in association cortex, which tends to be functionally heterogeneous 
(Blank et al., 2017; Braga et al., 2019; Fedorenko & Kanwisher, 2009; Frost & Goebel, 2012; 
Tahmasebi et al., 2012; Vázquez-Rodríguez et al., 2019). 
 
Overall, the first experiment revealed that the language network is strongly and 
significantly recruited for semantic processing of events presented not only verbally 
(through sentences), but also nonverbally (through pictures). Specifically, the language 
network is active when we interpret pictures that depict agent-patient interactions and 
relate them to stored world knowledge. It is worth noting, however, that responses to the 
semantic task are stronger for sentences than for pictures (as shown by the interaction 
between task and stimulus type at the network level; Figure 4-2, A), suggesting that the 
language network may play a less important role in nonverbal semantic processing. To 
test whether the engagement of the language network is necessary for comprehending 
visually presented events, we turn to behavioral evidence from individuals with global 
aphasia. 
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4.4.2 Experiment 2: Is the language network required for a nonverbal 
event semantics task? 

 
We examined two individuals with global aphasia (S.A. and P.R.). Both had suffered 
large vascular lesions that resulted in extensive damage to left perisylvian cortex, 
including the language network (see Figure 4-3 for lesion images, including a 
probabilistic map of the language network based on fMRI data from neurotypical 
participants, overlayed onto P.R.’s MRI). 
 

 
Figure 4-3. Structural MRI images from (A) S.A. and (B) P.R. (C) Probabilistic language 
activation overlap map overlaid on top of P.R.’s structural MRI image. The heatmap 
values range from 0.01 (red) to 0.5 (yellow) and correspond to proportions of individuals 
(in a set of n=220) that show a significant language localizer (sentences > nonwords) effect 
in that voxel. As can be seen, the lesion covers most left-hemisphere areas with voxels 
that likely belong to the language network. 

 
Both individuals were severely agrammatic (Table 4-2). Whereas they had some residual 
lexical comprehension ability, scoring well on tasks involving word-picture matching 
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and synonym matching across spoken and written modalities, their lexical production 
was impaired. Both failed to correctly name a single item in a spoken picture-naming task. 
S.A. displayed some residual written word production ability, scoring 24 out of 60 in a 
written picture-naming task. P.R., however, performed poorly in the written task, 
correctly naming just 2 out of 60 items. 
 
S.A. and P.R.’s syntactic processing was severely disrupted. They scored at or below 
chance in the reversible spoken and written sentence comprehension tasks (sentence-
picture matching), which included active sentences, e.g. “the man kills the lion”, and 
passive sentences, e.g. “the man is killed by the lion”. They also scored near chance in 
written grammaticality judgment assessments. The patients’ comprehension 
performance was impaired regardless of whether the sentences were presented visually 
or auditorily, indicating that the impairment was linguistic rather than perceptual. To 
determine whether the sentence comprehension impairments could be explained by 
working memory deficits, we evaluated the patients’ phonological working memory by 
means of a digit span test (using a recognition paradigm that did not require language 
production). The patients’ working memory span was somewhat reduced: S.A. and P.R. 
had the scores of 3 and 4 items, respectively, compared to the neurotypical age-matched 
controls who had an average score of 6.4 (SD=0.6; see Zimmerer et al., 2019). However, 
even such reduced working memory span should have been sufficient for processing the 
simple subject-verb-object sentences that were used in the syntactic assessments, as well 
as in the critical task described below. Thus, S.A. and P.R.’s difficulties with linguistic 
tasks could not be attributed to phonological working memory problems. 
 
Importantly and in line with prior arguments (Fedorenko & Varley, 2016), S.A. and P.R. 
performed relatively well on nonverbal reasoning tasks, which included measures of 
fluid intelligence (Raven’s Standard/Colored Progressive Matrices; Raven & Raven, 
2003), object semantics (Pyramids and Palm Trees test; Howard & Patterson, 1992), and 
visual working memory (Visual Pattern Test; Della Sala et al., 1999), indicating that the 
extensive brain damage in these patients did not ubiquitously affect all cognitive abilities 
(Table 4-3). Such a selective impairment of linguistic skills allowed us to examine the 
causal role of language in nonverbal event semantics. 
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Table 4-2. Results of linguistic assessments for participants with global aphasia. 

Lexical Tests Chance Score S.A. P.R. 
ADA spoken word picture matching 16.5 60/66* 61/66* 
ADA written word picture matching 16.5 62/66* 66/66* 
ADA spoken synonym matching 80 123/160* 113/160* 
ADA written synonym matching 80 121/160* 145/160* 
PALPA 54 spoken picture naming n/a 0/60 0/60 
PALPA 54 written picture naming n/a 24/60 2/60 
 
Syntactic Tests 
Comprehension of spoken reversible  50 49/100 38/100 
sentences 
Comprehension of written reversible 50 42/100 49/100 
sentences 
Written grammaticality judgments 20 26/40* 21/40 
 
Verbal Working Memory 
PALPA 13 digit span (recognition) n/a 3 items 4 items 
* indicates above chance performance (p < .05) 
 
The tests were taken from the Action for Dysphasic Adults (ADA) Auditory Comprehension Battery (S. 
Franklin et al., 1992) and the Psycholinguistic Assessment of Language Processing in Aphasia (PALPA; 
Kay et al., 1992) or developed for the purpose of the study. 
 
Table 4-3. Results of non-linguistic assessments for participants with global aphasia. 

Reasoning Tests S.A.  P.R. 
Raven’s Colored Progressive Matrices 36/36  34/36 
Raven’s Standard Progressive Matrices 53/60  36/60 
Pyramids and Palm Trees (3 picture version) 50/52  47/52 
Visual Pattern Test 11.5 (90th percentile*) 8.6 (40th percentile*) 
* percentiles are calculated with respect to adults in the same age range with no neurological impairment 
 
 
To test whether global aphasia affects general event semantics, we measured S.A. and 
P.R.’s performance on two tasks: (1) the picture plausibility task, identical to the 
pictures/semantic-task condition from Experiment 1, and (2) a sentence-picture 
matching task, during which participants saw a picture together with a sentence in which 
the agent and the patient either matched the picture or were switched (“a cop is arresting 
a criminal” vs. “a criminal is arresting a cop”); participants had to indicate whether or 
not the sentence matched the picture. The sentence-picture matching task was similar to 
the reversible sentence comprehension task in Table 4-2, with the exception that the 
pictures were identical to the pictures from the plausibility task and all sentences used 
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active voice. For each task, patient performance was compared with the performance of 
12 age-matched controls (58-78 years (mean 65.5 years) for the picture plausibility task; 
58-78 years (mean 64.7 years) for the sentence-picture matching task). 
 
The results showed a clear difference in performance between the picture plausibility task 
and the sentence-picture matching task (Figure 4-4), despite the fact that both tasks used 
the same set of pictures. Both individuals with global aphasia and control participants 
performed well above chance when judging picture plausibility. Neurotypical controls 
had a mean accuracy of 95.7% (SD = 3.8%). Aphasia patients had mean accuracies of 
91.0% (S.A.; 1.2 SD below average) and 84.6% (P.R.; 3.0 SD below average); the exact 
binomial test showed that performance of both patients was above chance (S.A., p < .001, 
95% CI [.82, .96]; P.R., p < .001, 95% CI [.75, .92]). Although their performance was slightly 
below the level of the controls, the data indicate that both patients were able to process 
complex semantic (agent-patient) relations to evaluate the plausibility of depicted events. 
 

 
Figure 4-4. Individuals with profound aphasia perform well on picture plausibility 
judgment task but fail on the sentence-picture matching task. Patient accuracies are 
indicated in blue (PR) and green (SA); average controls’ performance is shown as gray 
bars; individual controls’ performance (N=12) is shown as gray dots. The dotted line 
indicates chance performance. 
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In the sentence-picture matching task, control participants performed close to ceiling, 
with a mean accuracy of 98.3% (SD = 1.1%). In contrast, both patients were severely 
impaired: S.A. had a mean accuracy of 60.8% and P.R. had a mean accuracy of 46.4%. 
Exact binomial test showed that P.R.’s performance was at chance (p = .464., 95% CI 
[.38, .55]), while S.A.’s performance was above chance (p = .009, 95% CI [.53, .69]) but still 
drastically lower than that of the controls. This result concurs with S.A.’s and P.R.’s poor 
performance on the reversible sentence comprehension tasks, which had a similar setup 
but used different materials. However, it stands in stark contrast with the participants’ 
ability to interpret agent-patient interactions in pictures. The Crawford-Howell (1998) t-
test indicated a significant dissociation between the picture plausibility task and the 
sentence-picture matching task for both individuals (S.A., t(11) = 18.00, p < .001; P.R., t(11) 
= 24.20, p < .001). This dissociation held for both hit rate and false alarm rate 
(Supplemental figure 4-2). 
 
The findings from Experiment 2 demonstrate that, in spite of severe linguistic 
impairments, individuals with global aphasia are able to access information about event 
participants depicted in a visual scene, the action taking place between them, the roles 
they perform in the context of this action, and the real-world plausibility of these roles, 
indicating that none of these processes require the presence of a functional language 
network. 
 
 

4.5 Discussion 
 
The relationship between language and thought has been long debated, both in 
neuroscience (e.g., Binder & Desai, 2011; Bookheimer, 2002; Fedorenko & Varley, 2016; 
Friederici, 2020) and other fields (e.g., Carruthers, 2002; Hauser et al., 2002; Vygotsky, 
1934; Winograd, 1976). Here, we ask whether language-responsive regions of the brain 
are essential for a core component of thought: processing combinatorial semantic 
representations. We demonstrate that left-hemisphere language regions are active during 
the semantic processing of events shown as pictures, although the semantic processing 
of events shown as sentences elicits a stronger response. We further show that the 
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language network is not essential for nonverbal event semantics, given that the two 
individuals with global aphasia, who lack most of their left-hemisphere language 
network, can still evaluate the plausibility of visually presented events. Our study 
advances the field in three ways: i) it explores relational semantic processing in the 
domain of events, moving beyond the semantics of single objects—the focus of most prior 
neuroscience work on conceptual processing; ii) it evaluates neural overlap between 
verbal and nonverbal semantics in fMRI at the level of individual participants; and iii) it 
provides causal evidence in support of a dissociation between language and nonverbal 
event semantics. In the remainder of the manuscript, we discuss the implications of our 
results. 
 

4.5.1 The language network is not required for nonverbal event semantics 
 
Semantic processing of events is a complex, multi-component process. For instance, 
deciding whether an event is plausible requires one to (1) identify the relevant event 
participants, (2) determine the action taking place between them, (3) decipher the role 
that each event participant is performing (in our task, agent vs. patient), and finally, (4) 
estimate the likelihood that a given participant would be the agent/patient of the relevant 
action. Whereas the first three components can, at least in part, be attributed to input-
specific processes (e.g., high-level vision), establishing plausibility cannot be solely 
attributed to perception: in order to decide whether a cop arresting a criminal is more 
likely than a criminal arresting a cop, participants need to draw on their world 
knowledge. We demonstrate that this highly abstract process can proceed even when the 
language network is severely impaired, thus providing strong evidence that a functional 
language network is not required for nonverbal semantic processing. 
 
The functional dissociation between language-based and vision-based semantic 
judgments of events accords with the fact that both non-human animals and preverbal 
infants are capable of complex event processing (Seed & Tomasello, 2010; Spelke, 1976) 
and that specialized neural mechanisms, distinct from the language network, have been 
associated with visual understanding of actions (Fang et al., 2016; Häberling et al., 2016; 
Tarhan & Konkle, 2020) and interactions between animate and/or inanimate entities 
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(Fischer et al., 2016; Walbrin et al., 2018). These neural mechanisms are either bilateral or 
right-lateralized, which constitutes further evidence of their dissociation from language, 
which is typically left-lateralized. 
 
Our results are also consistent with reports of a dissociation between verbal and 
nonverbal semantic processing of single objects in patients with aphasia (e.g., Antonucci 
& Reilly, 2008; Bi et al., 2011; Chertkow et al., 1997; Jefferies & Lambon Ralph, 2006; 
Lambon Ralph et al., 2010) and semantic dementia (e.g., Binney et al., 2016; Gorno-
Tempini et al., 2004; Mion et al., 2010; Snowden et al., 2018; Thompson et al., 2003). Those 
studies typically report that linguistic impairments arise as a result of left hemisphere 
damage, whereas nonverbal semantic processing deficits are considered to be caused by 
either bilateral (Lambon Ralph et al., 2017) or right-lateralized lesions (Gainotti, 2011, 
2015). Our work contributes to this literature by showing that the language-semantics 
dissociation holds not only for single concepts but also for combinatorial event-level 
representations (see also Colvin et al., 2019; Dickey & Warren, 2015). Although we only 
test two individuals with global aphasia, these data provide an important contribution to 
the field because of the unique nature of the impairment in these individuals: large-scale 
disruption of multiple linguistic functions and relatively preserved nonverbal cognition. 
To test the generalizability of our findings, future work should evaluate a larger sample 
of individuals with such a dissociation and comprehensively assess both verbal and 
nonverbal semantic processing of objects, actions, and events. 
 
If language is not essential for event semantics, why is the language network active 
during a nonverbal event semantics task? It is possible that neurotypical participants 
partially recode pictorial stimuli into a verbal format (Greene & Fei-Fei, 2014; Trueswell 
& Papafragou, 2010), which could provide access to linguistic representations as an 
additional source of task-relevant information (Connell & Lynott, 2013). Indeed, text-
based computational models developed in recent years have been shown to successfully 
perform a wide range of “semantic” tasks, such as inference, paraphrasing, and question 
answering (T. B. Brown et al., 2020; Devlin et al., 2018, among others). Even simple n-
gram models can be used to determine the probability of certain events by, e.g., 
estimating the probability that the phrase “is arresting” directly follows “cop” vs. 
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“criminal”. Such language-based semantic information is distinct from non-language-
based world knowledge (Clark, 2004; Lucy & Gauthier, 2017), and both kinds of 
information can be flexibly used depending on task demands (Willits et al., 2015). As a 
result, it is possible that linguistic resources (housed in the language network) provide 
an additional source of information when neurotypical individuals determine visual 
event plausibility. The absence of this additional information source may account for the 
small decrement in performance observed in participants with aphasia relative to the 
control participants. 
 
One might speculate that this “language-based” semantic processing route plays a 
primary role in neurotypical participants, whereas patients with aphasia rely on some 
alternative route that arose due to the functional reorganization of the brain postinjury. 
However, we consider this possibility unlikely. Past behavioral evidence from 
experiments in neurotypical individuals shows that verbal recoding of visual information 
is relatively slow and can only occur after semantic information has been retrieved from 
the picture (Potter et al., 1986; Potter & Faulconer, 1975). Furthermore, participants do not 
typically generate covert verbal labels for visually presented objects unless instructed to 
do so (Dahan et al., 2001; Magnuson et al., 2003; Rehrig et al., 2020; cf. Meyer et al., 2007) 
or unless the task imposes memory demands (Pontillo et al., 2015). Our stimuli depicted 
complex two-participant events, making verbal recoding even more effortful than 
recoding of single objects and, therefore, unlikely to occur during a task that does not 
require linguistic label generation (Papafragou et al., 2008). Finally, even if individuals 
with aphasia did rely on a compensatory (e.g., right-hemisphere-mediated) mechanism 
for semantic processing, it would still indicate that brain mechanisms outside of the core 
left-hemisphere language network are capable of supporting combinatorial semantics, 
thus underscoring our claim that language and nonverbal event semantics are neurally 
dissociable. 
 
Future work should further investigate the nature of the language network’s responses 
to nonverbal stimuli. Although some studies, like ours, have reported that the left-
hemisphere language regions have stronger responses to sentences than content-matched 
pictures (Amit et al., 2017), others have reported the opposite preference (Jouen et al., 
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2015). The divergent result in Jouen et al. (2015) is most likely due to differences in the 
analytic approach, namely, in the use of ROIs derived from group analyses as opposed 
to functionally defined fROIs. Task demands could also contribute to the difference in 
results: Jouen et al. used a one-back memory task (no condition-specific behavioral results 
reported), whereas we used a plausibility judgment task that had similar accuracies and 
reaction times between the sentences and pictures. The fact that we found an interaction 
between input type (sentences vs. pictures) and task also indicates that task effects on 
activity in the language network merit additional investigation (although see Cheung et 
al., 2020, for evidence that task demands often have little effect on the responses of the 
language regions to verbal stimuli). The task effects observed in our study cannot be 
explained by task difficulty: the participants’ accuracies for the semantic vs. perceptual 
task were not significantly different; the reaction times were slightly faster for the 
perceptual task, but the effect size was small (0.06s, with average trial RT=1.21s) and 
therefore unlikely to fully account for the neural effect. Moreover, the language network 
is not generally driven by task difficulty (Diachek et al., 2020) and shows strong, 
consistent responses even in the absence of task (Baldassano et al., 2018; Brennan et al., 
2016; Huth et al., 2016; Scott et al., 2017; Shain et al., 2020; Wehbe et al., 2014, among 
others). Thus, future work needs to explore the effects of task content rather than task 
difficulty per se. 
 

4.5.2 Implications for theories of semantics in the brain 
 
In this paper, we focused on the role of the language network in nonverbal event semantics, 
not on the question of which cognitive and neural mechanisms support modality-
invariant event processing (we report those analyses in other work; Ivanova et al., in 
prep.). Nonetheless, current results also bear on general theories of semantic processing 
in the mind and brain. 
 
Many current theories of semantics highlight broad anatomical areas implicated in 
linguistic processing as putative semantic hubs. Those include left angular gyrus (e.g., 
Binder & Desai, 2011), left inferior frontal cortex (e.g., Hagoort & van Berkum, 2007), and 
the anterior temporal lobes (e.g., Patterson et al., 2007). However, the areas in question 
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are large patches of cortex that are structurally and functionally heterogeneous: as a result, 
simply because a visual-semantics study reports activation within the ‘LIFG’, or the 
‘angular gyrus’, does not mean that the language-responsive portions of those broad areas 
are at play (see, e.g., Fedorenko & Blank, 2020 for discussion). 
 
In the current study, the language-responsive fROIs that we defined within left angular 
gyrus, left inferior frontal cortex, and left anterior temporal lobe all responded more 
strongly during the semantic task than during the perceptual task, for both sentences and 
pictures. Although this pattern is consistent with evidence of their general involvement 
in semantic processing, it goes against some of the specific claims made in the literature. 
For example, our results are inconsistent with the claim that the angular gyrus is the 
primary region involved in event semantics (Binder & Desai, 2011; cf. Williams et al., 2017) 
given that other regions show a similar functional response profile. That said, the fROI in 
the angular gyrus was the only one that showed numerically stronger responses to 
pictures than to sentences, consistent with evidence of its involvement in processing (at 
least some) semantically meaningful nonverbal stimuli (Amit et al., 2017; Baldassano et 
al., 2017; Fairhall & Caramazza, 2013; Handjaras et al., 2017; Pritchett et al., 2018). Our 
results also provide some evidence that a portion of the left anterior temporal lobe (ATL) 
is engaged in processing event-level representations in verbal stimuli (Jackson et al., 2015; 
Teige et al., 2019; cf. Lewis et al., 2015; Schwartz et al., 2011; Xu et al., 2018, who claim 
that the ATL is involved in retrieving property-level but not event-level information). 
Finally, we observed that the ATL language fROI responded more strongly to sentences 
than to pictures, which might speak against its role as an amodal semantic hub. Note, 
however, that this fROI encompasses only a small fraction of left ATL; it therefore 
remains possible that some other parts of the ATL — especially its ventral/ventromedial 
portions — have a modality-invariant response profile (Lambon Ralph et al., 2017; Visser 
et al., 2012). 
 
In addition, our findings contribute to the body of work on the neural representation of 
agent/patient relationships. Previous experiments attempting to localize brain regions 
that support thematic role processing have attributed the processing of agent/patient 
relations to the left hemisphere. Frankland and Greene (2015, 2020) used sentence stimuli 
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to isolate distinct areas in left superior temporal sulcus (STS) that are sensitive to the 
identity of the agent vs. the patient. Wang et al. (2016) found that the same (or nearby) 
STS regions also contained information about thematic roles in videos depicting agent-
patient interactions. However, the latter study identified a number of other regions that 
were sensitive to thematic role information, including clusters in the right posterior 
middle temporal gyrus and right angular gyrus, suggesting that left STS is not the only 
region implicated in thematic role processing. A similar distributed pattern was also 
reported in a neuropsychological study (Wu et al., 2007), which found that lesions to mid-
STS led to difficulties in extracting thematic role information from both sentences and 
pictures; however, deficits in visual agent-patient processing were additionally 
associated with lesions in anterior superior temporal gyrus, supramarginal gyrus, and 
inferior frontal cortex, which casts further doubt on the unique role of left STS in agent-
patient relation processing. In sum, the evidence to date suggests that parts of the left STS 
may play a role in processing linguistic information, including thematic relations 
(Frankland & Greene, 2015, 2020) and verb argument structure (Elli et al., 2019; Williams 
et al., 2017), but additional brain regions support the processing of event participant roles 
in nonverbal stimuli. 
 
Finally, our results are generally consistent with a distributed view of semantic 
representations (McClelland & Rogers, 2003; Tyler & Moss, 2001). Multiple recent studies 
found that semantic information is not uniquely localized to any given brain region but 
rather distributed across the cortex (e.g., Anderson et al., 2017; Huth et al., 2016; Pereira 
et al., 2018; X. Wang et al., 2018). Distributing information across a network of regions in 
both left and right hemispheres enables the information to be preserved in case of brain 
damage (Schapiro et al., 2013), which would explain why patients with global aphasia 
preserve the ability to interpret visually presented events. That said, the findings reported 
here do not speak to the question of whether such representations rely primarily on 
sensorimotor areas (Barsalou, 2008; Pulvermuller, 1999) or on associative areas (Mahon, 
2015; Mahon & Caramazza, 2008). 
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4.5.3 Implications for neuroimaging studies of amodal semantics 
 
The non-causal nature of the language network activation during a nonverbal semantic 
task has important implications for the study of amodal/multimodal concept 
representations. A significant body of work has aimed to isolate “amodal” 
representations of concepts by investigating the overlap between regions active during 
the viewing of verbal and nonverbal stimuli (Bright et al., 2004; Devereux et al., 2013; 
Fairhall & Caramazza, 2013; Handjaras et al., 2017; Sevostianov et al., 2002; Thierry & 
Price, 2006; Vandenberghe et al., 1996; Visser et al., 2012; A. D. Wagner et al., 1997). Most 
of these overlap-based studies have attributed semantic processing to frontal, temporal, 
and/or parietal regions within the left hemisphere. Our work, however, demonstrates 
that, even though meaningful linguistic and visual stimuli evoke overlapping activity in 
left-lateralized frontal and temporal regions, conceptual information about events 
persists even when most of these regions are damaged. Thus, overlapping areas of 
activation for verbal and nonverbal semantic tasks observed in brain imaging studies do 
not necessarily play a causal role in amodal event semantics. 
 
Overall, our study emphasizes the importance of investigating combinatorial semantic 
processing using both verbal and nonverbal stimuli. Our results show that semantic 
processing of visually presented events does not require the language network, drawing 
a sharp distinction between language and nonverbal event semantics and highlighting 
the necessity to characterize the relationship between them in greater detail using a 
combination of brain imaging and patient evidence. 
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4.7 Appendix 
 

 
 
Supplemental figure 4-1. Whole-brain random effects group analysis (Holmes&Friston, 
1998) for Semantic > Perceptual task contrast, conducted separately on the Experiment 1 
data from sentence trials (a) and picture trials (b). The analysis was conducted using the 
spm_ss toolbox (available at http://www.nitrc.org/projects/spm_ss), which interfaces 
with SPM and the CONN toolbox (https://www.nitrc.org/projects/conn). The results 
were thresholded at p=0.001, and resulting clusters were FDR-corrected at p=0.05. 
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Supplemental figure 4-2. Hit rate (A) and false alarm rate (B) for Experiment 2 tests. 
Error bars indicate standard error of the mean. The Crawford-Howell test indicated a 
significant dissociation between the two tests for both hit rate (S.A.: t(11) = 18.95, p < .001; 
P.R.: t(11) = 19.59, p < .001) and false alarm rate (S.A.: t(11) = 12.55, p < .001; P.R.: t(11) = 
20.31, p < .001). 
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Chapter 5  
 

Amodal semantics outside the language 
network 

 

Collaborators:  
Carina Kauf, Hope H. Kean, Tanya Goldhaber, Zachary Mineroff, Zuzanna 

Balewski, Alfonso Nieto-Castañón, Rosemary Varley, Nancy Kanwisher, 
Evelina Fedorenko 

 
 

5.1 Abstract 
 
The language system is often implicated in the representation and manipulation of 
abstract semantic knowledge. However, this view is not consistent with a large body of 
evidence suggesting that language processing is neurally distinct from the rest of 
cognition. Here, we describe a set of brain regions, separate from the language network, 
that is engaged in task-based semantic processing of both linguistic and non-linguistic 
stimuli. In three fMRI experiments (49 sessions across 41 participants), participants 
viewed blocks of events presented as either sentences or pictures. In half of the blocks, 
participants performed a semantic task; in the other half, they performed a low-level 
perceptual task, like tracking the motion of the stimulus on the screen. The stimuli and 
the exact tasks varied across experiments. We found that a set of brain regions, located 
primarily in left lateral prefrontal cortex, left temporo-parietal cortex, and right 
cerebellum, responded selectively to semantic tasks for both sentences and pictures. 
These regions are spatially and functionally separate from the classic language, multiple 
demand (MD), and default mode networks (DMN), exhibiting a unique response profile. 
Our results show that semantic processing is distinct from both linguistic and domain-
general cognitive processing and engages its own neural machinery. 
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5.2 Introduction 
 
The ability to flexibly leverage information to achieve specific goals is a key component 
of intelligent behavior. A particularly valuable type of information is semantic 
knowledge — generalized, abstract information about entities, actions, and ideas. Here, 
we investigate the brain basis of flexible, task-driven semantic processing.  

 
A vital property of semantic processing is its generalizability. For instance, we can 
recognize an event “a girl is singing” regardless of the identity of the girl and the song 
and regardless of whether we hear this event or see it. Further, with the emergence of 
language, we do not even need to perceive an event to activate its representation: a string 
of letters describing it is sufficient. Generalizability allows us to integrate information 
across different types of input so that it can be used in a wide range of future situations. 
Thus, we investigate semantic processing of events presented in two different formats: 
sentences vs. pictures. 
 
Our goal is to determine whether any brain regions are selectively engaged in semantic 
processing regardless of input format. To do so, we conduct a whole-brain search for 
regions that respond to both sentence and picture semantics and then, in held-out data, 
determine whether the magnitude of their response is biased toward a particular input 
format. A putative semantic brain region/network should respond strongly during 
semantic processing of both sentences and pictures. Following the terminology in much 
prior work, we will use the term “amodal” to refer to brain regions that are invariant to 
verbal vs. pictorial presentation format (e.g., Coccia et al., 2004; Fairhall & Caramazza, 
2013; Gainotti, 2011; Patterson et al., 2007; Pobric et al., 2010). 
 
A substantial number of studies report overlapping activations/representations for 
sentences and pictures in left-lateralized frontal and/or temporal/temporo-parietal brain 
regions broadly resembling the language network (e.g., Devereux et al., 2013; Fairhall & 
Caramazza, 2013; Handjaras et al., 2017; Krieger-Redwood et al., 2015; Shinkareva et al., 
2011; Vandenberghe et al., 1996; Visser et al., 2012). As a result of this and other work, 
frontal and temporal language regions are sometimes argued to carry out so-called 
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“semantic control”, i.e., selection of relevant semantic information in response to a task 
(e.g., Davey et al., 2016; Jefferies, 2013; Lambon Ralph et al., 2017; Martin & Chao, 2001; 
Whitney et al., 2011, 2012; Zhang et al., 2022). However, most studies do not explicitly 
compare activity evoked by the semantic task with activity evoked by linguistic 
processing alone, making it impossible to determine whether these processes rely on the 
same brain regions in a given participant. In recent work, we showed that, if the language 
regions are defined using an independent localizer task, they respond primarily to 
sentences and weakly or not at all to pictures and movies (except the language fROI in 
left angular gyrus; e.g., Benn et al., 2021; Shain, Paunov, Chen et al., 2022; Sueoka et al., 
2022). These findings raise the possibility that previously reported ‘semantic’ regions are 
actually distinct from the language regions, even though they may broadly fall within the 
same anatomical areas.  
 
Furthermore, the majority of past studies of semantic processing have focused on single 
objects, so the results may not generalize to actions (e.g., Wurm & Caramazza, 2019) or 
events (Baldassano et al., 2018; Z. Hu et al., 2019; Jouen et al., 2015; Thierry & Price, 2006). 
We define an event as an action along with the entity or entities participating in that 
action. Of key importance to event representations are relations between participating 
entities, which determine their event (thematic) roles. For instance, an event “a cat is 
chasing a dog” requires us to identify not only the participating entities (cat and dog), 
but also the interaction taking place between them (chasing), as well as the role that each 
participant plays in that interaction (chasing vs. being chased). Thus, semantic processing 
of events requires object and action processing but is not reducible to them (Dresang et 
al., 2019).  
 
The few studies that have investigated event processing across modalities implicate a set 
of regions known as the default mode network (DMN; Baldassano et al., 2018; Z. Hu et 
al., 2019; Jouen et al., 2015; cf. Thierry & Price, 2006). The DMN has been hypothesized to 
support construction of structured mental situation models (Baldassano et al., 2017; 
Hassabis & Maguire, 2009) and encode specific event schemas (Baldassano et al., 2018), 
making it a prime candidate for semantic processing of events. That said, some studies 
have indicated that different brain regions within the DMN might belong to functionally 



 
 
 

127 

distinct subnetworks (Andrews-Hanna et al., 2010; Braga et al., 2019; Braga & Buckner, 
2017; Deen & Freiwald, 2022; DiNicola et al., 2020; Wen et al., 2020), only some of which 
might be engaged in situation model construction. It is also unclear whether the DMN 
gets engaged only in response to complex, long-lasting stimuli (as in, e.g., Baldassano et 
al., 2017, 2018) or is also active during brief event presentations (such as observing a scene 
for 1-2 seconds 
 
Finally, an important factor that should be considered in any study of semantic 
processing is the presence of an external task. Studies of other cognitive domains, such 
as inner speech (Hurlburt et al., 2016) and conscious stimulus processing (Frässle et al., 
2014; Tsuchiya et al., 2015), have shown that the presence of an external task (e.g., 
following the experimenter’s instructions about when to press a button) has a strong 
effect on the observed activation patterns. In particular, cognitive tasks activate a set of 
frontal and parietal regions known as the multiple demand (MD) network (Duncan, 2010; 
Duncan & Owen, 2000). The MD network is active during many different cognitively 
challenging tasks (Assem, Glasser, et al., 2020; Fedorenko et al., 2013; Hugdahl et al., 2015; 
Shashidhara, Mitchell, et al., 2019). Typically, activity in the MD network and the DMN 
is negatively correlated: external tasks activate MD regions and deactivate DMN regions. 
However, some studies also reported DMN recruitment during semantic tasks (Evans et 
al., 2020; Jung et al., 2021; Lanzoni et al., 2020; X. Wang et al., 2021; Zhang et al., 2022). 
 
Thus, three previously characterized networks might contribute to semantic processing 
of events: the fronto-temporal language network, the domain-general multiple demand 
network, and the default mode network (see Xu et al., 2016, 2017, for an account of 
semantic processing that implicates all three). Thus, in addition to localizing semantic 
regions using a whole-brain analysis, we also test response to semantic processing of 
events in these three networks.  
 
Our critical experiments probe task-driven semantic processing of events presented as 
sentences versus pictures. By introducing design variations across the three experiments, 
we test whether our results generalize across semantic tasks (plausibility vs. reversibility), 
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event type (animate-animate or animate-inanimate interactions), and picture type 
(photos vs. line drawings).  
 
A key distinguishing feature of our work compared to previous investigations of amodal 
semantics is the use of the individual-subject functional localization method (Fedorenko 
et al., 2010; Saxe, Brett, et al., 2006). This approach stands in contrast to traditional group-
averaging analyses, whereby neural responses are averaged across participants on a 
voxel-by-voxel basis, and the resulting activation clusters are interpreted via ‘reverse 
inference’ from anatomy (e.g., Fedorenko, 2021; Poldrack, 2006, 2011). Group analyses 
tend to overestimate overlap in cases of nearby functionally distinct areas (Nieto-
Castañón & Fedorenko, 2012), which is problematic for studies that aim to establish 
regions of shared activations across input modalities. This consideration is particularly 
important when analyzing responses in association cortex, where different functional 
regions vary in their precise locations across individuals (Blank et al., 2017; Fedorenko & 
Kanwisher, 2009; Frost & Goebel, 2012; Shashidhara, Spronkers, et al., 2019; Tahmasebi 
et al., 2012; Vázquez-Rodríguez et al., 2019) and often lay side by side in the form of 
‘interdigitated networks’ (Braga et al., 2019, 2020; Deen & Freiwald, 2022; DiNicola et al., 
2020; Fedorenko, Duncan, et al., 2012). The use of functional localization allows us to 
distinguish between semantic, linguistic, and domain-general executive processes even 
if they recruit brain regions that are adjacent to each other, thus enabling powerful and 
generalizable inferences about the neural basis of task-driven semantics. 
 
 

5.3 Method 
 

5.3.1 Participants 
 
We collected data from 14 participants for Experiment 1 (11 women, 3 men, mean age = 
25.9 years, SD = 8.10), 18 participants for Experiment 2 (7 women, 11 men, mean age = 
21.0 years, SD = 1.68), and 26 participants for Experiment 3 (11 women, 13 men, mean age 
= 23.4 years, SD = 4.73). The participants were recruited from MIT and the surrounding 
Cambridge/Boston, MA, community and paid for their participation. All were native 
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speakers of English, had normal or corrected to normal vision, and no history of language 
impairment. Two participants from Experiment 1, one from Experiment 2, and three from 
Experiment 3 were excluded due to low data quality; two participants from Experiment 
2 and one participant from Experiment 3 were further excluded due to low behavioral 
task performance, leaving a total of 12, 15, and 22 participants for Experiments 1, 2, and 
3, respectively. The protocol for the study was approved by MIT’s Committee on the Use 
of Humans as Experimental Subjects (COUHES). All participants gave written informed 
consent in accordance with protocol requirements. 
 

 
Figure 5-1. Sample stimuli used for the three critical experiments. In Experiments 1 and 
3, sentences and pictures described the same events (but varied in presentation details; 
see Section 5.3.2). Half of the events were plausible, and half were implausible (in 
Experiment 1, plausibility was manipulated by replacing the object; in Experiment 3, 
plausibility was manipulated by switching the agent and the patient). In Experiment 2, 
sentences and pictures described different events. All events were plausible, but some 
were reversible (the action could be undone) and some were irreversible. 

 

5.3.2 Critical experiments 
 
The critical experiments in all three studies had a 2x2 blocked design: in each block, the 
stimuli were either sentences or pictures, and the task was either semantic (main) or 
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perceptual (control). Thus, each experiment had four conditions: sentences + semantic 
task (SENT_SEM), sentences + perceptual task (SENT_PERC), pictures + semantic task 
(PIC_SEM), and pictures + perceptual task (PIC_PERC). To test the generalizability of our 
findings, we varied the nature of the stimuli and tasks across experiments (Figure 5-1). 
During behavioral piloting, the semantic and perceptual tasks within each experiment 
were adjusted to be approximately matched in difficulty. 
 

5.3.2.1 Experiment 1 
 
The materials consisted of 120 pairs of color photographs depicting interactions of people 
with everyday objects (except one pair that depicted animate-animate interactions), as 
well as 120 pairs of ‘corresponding’ sentences that described the same interactions. Half 
of the stimuli depicted/described plausible scenarios (e.g., “peeling a carrot”), and half 
of the stimuli depicted/described implausible scenarios (e.g., “peeling a candle”). The 
photographs in each pair were highly similar except for the object used. Furthermore, 
materials were created in quadruplets, so that any given object was used in a plausible 
version in one pair, and in an implausible version in another pair (for example, for the 
peeling a candle / carrot, there was another pair: lighting up a carrot / candle). 
 
The semantic task was to determine whether a given event was plausible or implausible. 
The perceptual task was to determine whether the stimulus was moving left or right (see 
below). 
 
Before the experiment, participants completed a practice run outside the fMRI scanner 
with 8 picture and 8 sentence stimuli (which were never shown inside the scanner). 
During the experiment, each of the 480 unique stimuli (240 pictures and 240 sentences) 
was presented twice: once in the semantic task, and once in the perceptual task, for a total 
of 960 trials. The 960 trials were split into 5 subsets of 192 trials each (48 for each of the 
four conditions), corresponding to five runs, with the constraint that any given event 
(e.g., a man peeling a carrot) occurred only once within a run (i.e., in only one of the four 
conditions). The 192 trials in each run were further grouped into 16 blocks (4 per 
condition) of 12 trials each, ensuring that the plausible and the implausible versions of 
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the same event did not occur within the same block (within or across the four conditions). 
The exact grouping of the trials varied across participants. 
 
Each trial lasted 2 s and consisted of the stimulus presented for 1.4 s followed by 0.6 s of 
fixation. During stimulus presentation (across all four conditions), the stimulus appeared 
on the screen (centered vertically, with the horizontal position drawn uniformly from an 
80 pixel range around the vertical midline of the screen) and then moved diagonally 
toward the top left or top right corner. The picture and sentence stimuli moved at the 
velocity of (1,10) and (2,10) pixels in (x,y)-direction, respectively (the speed was chosen 
so as to approximately match the semantic and perceptual conditions for difficulty, based 
on behavioral piloting). Each block was preceded by a 2 s instructions screen to tell 
participants whether to perform the semantic or the perceptual task on the 
pictures/sentences that follow, and to remind them which button to press for which 
response: “1 – plausible; 2 – implausible” or “1 – left; 2 – right”. The instructions were 
additionally displayed in small font in the top right corner throughout each block.  
 
Each experimental block lasted 26 s (2 s instructions + 12 trials * 2 s each). Each run 
consisted of 16 experimental blocks (4 per condition) and 5 fixation blocks each 16 s in 
duration, for a total duration of 496 s (8 min 16 s). A fixation block appeared at the 
beginning of each run, and after each set of four experimental blocks. Condition order 
was counterbalanced across runs and participants and was palindromic within each run 
(to counteract scanner drift). Each participant completed five runs for a total of 20 blocks 
per condition per subject. For consistency with the other two experiments, each of which 
only included two runs, we here focus on the first two runs for each participant (the 
responses for all five runs were attenuated due to adaptation but showed a similar 
pattern). 
 

5.3.2.2 Experiment 2 
 
The materials consisted of color photographs and sentences depicting/describing 
interactions of people with everyday objects (except two photos and two sentences that 
depicted/described animate-animate interactions). Unlike in Experiment 1, the scenarios 
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in the pictures and sentences were different (to minimize the possibility of cross-coding: 
i.e., recalling the verbal representation for a picture if a sentence version of the same event 
has been previously encountered, or recalling the pictorial representation for a sentence 
if a picture version has been previously encountered). Further, all scenarios were 
plausible (to ensure that responses in Experiment 1 are not driven by the unexpected 
nature of half of the stimuli), but some depicted/described irreversible actions, i.e., 
actions, the effects of which cannot be undone (e.g., eating a clementine or peeling a 
carrot) and others depicted/described reversible actions (e.g., putting staples into a 
stapler or inserting a key into a lock). A subset of the plausible photographs from 
Experiment 1 (N=112) were reused for this study along with newly created sentences 
(N=112). 
 
The semantic task was to determine whether a given action was reversible or irreversible. 
The perceptual task was to determine whether the movement direction of the stimulus 
changed 3 or 4 times (two participants completed an earlier version of the task where the 
direction changed either 5 or 7 times). 
 
Before the experiment, participants completed a practice run outside the scanner with 8 
picture and 8 sentence stimuli (not used inside the scanner). For the main experiment, we 
created two lists, where each stimulus was assigned either to the semantic condition or 
to the perceptual condition. Across the two lists, we balanced the ratio of actions 
irreversibly affecting the object to those reversibly doing so and the split of these event 
types across modalities (i.e., each list consisted of 83 irreversible events, and 141 
reversible events; 43 of the 83 irreversible events were presented as pictures and 40 were 
presented as sentences). Each participant was assigned one of the two lists. Each list was 
split into two subsets of 112 trials each (28 for each of the four conditions), corresponding 
to two runs. The 112 trials in each run were further grouped into 16 blocks (4 per 
condition) of 7 trials each, ensuring that each block contained between 1 and 4 irreversible 
events and that at most 3 trials in a row changed direction the same number of times.  
 
Each trial lasted 2 s and consisted of the stimulus presented for 1.4 s followed by a prompt 
(“RESPOND”) presented in the center of the screen in red font for 0.6 s. During stimulus 
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presentation (across all four conditions), the stimulus appeared in the center of the screen 
and then randomly changed directions. The picture and sentence stimuli moved at the 
velocity of (1,10) and (2,10) pixels in (x,y)-direction, respectively (the speed was chosen 
so as to approximately match the semantic and perceptual conditions for difficulty, based 
on behavioral piloting). Each block was preceded by a 2 s instructions screen to tell 
participants whether to perform the semantic or the perceptual task on the 
pictures/sentences that follow, and to remind them which button to press for which 
response: “1 - irreversible; 2 – reversible” or “1 – odd number of direction changes; 2 – 
even number of direction changes”. The instructions were additionally displayed in small 
font in the bottom left corner throughout each block. 
 
Each experimental block lasted 16 s (2 s instructions + 7 trials * 2 s each). Each run 
consisted of 16 experimental blocks (4 per condition) and 5 fixation blocks each 16 s in 
duration, for a total duration of 336 s (5 min 36 s). A fixation block appeared at the 
beginning of each run, and after each set of four experimental blocks. As in Experiment 
1, condition order was counterbalanced across runs and participants, and was 
palindromic within each run. Each participant completed two runs. 
 

5.3.2.3 Experiment 3 
 
The data from this experiment are the same as those described in Chapter 4. The materials 
consisted of 40 pairs of line drawings depicting interactions between two animate entities, 
as well as 40 pairs of ‘corresponding’ sentences that described the same interactions. As 
in Experiment 1, half of the stimuli depicted/described plausible scenarios (e.g., “a cop 
is arresting a criminal”), and half of the stimuli depicted/described implausible scenarios 
(e.g., “a criminal is arresting a cop”). The implausible events were created by swapping 
the agent and the patient of the plausible events. The semantic task was to determine 
whether a given event was plausible or implausible, and the perceptual task was to 
determine whether the stimulus was moving left or right (as in Experiment 1). 
 
As in Experiment 2, we created two lists, where each stimulus was assigned either to the 
semantic condition or to the perceptual condition. Each list was split into two subsets of 
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80 trials each (20 for each of the four conditions), corresponding to two runs, ensuring 
that the same event (in picture vs. sentence format) does not occur in the same run. The 
80 trials in each run were further grouped into 8 blocks (2 per condition) of 10 trials, 
ensuring that at most 3 plausible or implausible events appeared in a row. Movement 
direction of the stimuli was assigned randomly. 
 
Each trial lasted 2 s and consisted of the stimulus presented for 1.5 s followed by 0.5 s of 
fixation. During stimulus presentation (across all four conditions), the stimulus appeared 
in the center of the screen and then moved horizontally toward the left or right. The 
picture and sentence stimuli both moved at the velocity of 0.025 pixels/screen in positive 
or negative x-direction (the speed was chosen to approximately match the semantic and 
perceptual conditions for difficulty, based on behavioral piloting). Each block was 
preceded by a 2 s instructions screen to tell participants whether to perform the semantic 
or the perceptual task on the pictures/sentences that follow, and to remind them which 
button to press for which response: “1 - plausible; 2 – implausible” or “1 - left; 2 – right”. 
The instructions were additionally displayed in small font in the bottom left corner 
throughout each block. 
  
Each experimental block lasted 22 s (2 s instructions + 10 trials * 2 s each). Each run 
consisted of 8 experimental blocks (2 per condition) and 3 fixation blocks each 22 s in 
duration, for a total duration of 242 s (4 min 2 s). A fixation block appeared at the 
beginning of each run, and after each set of four experimental blocks. Condition order 
was counterbalanced across runs and participants and was palindromic within each run. 
Each participant completed two runs. 
 

5.3.3 Localizer experiments 
 
In addition to the critical experiment, all participants completed the language localizer 
experiment (sentence and nonword list reading), used to identify language-responsive 
regions in individual participants (Fedorenko et al., 2010). Participants in Studies 2 and 3 
also completed a spatial working memory task (Fedorenko et al., 2013), used to identify 
multiple demand and default mode regions in individual participants. 
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5.3.3.1 Language localizer 
 
Participants from Experiment 1 read sentences (“THE DOG CHASED THE CAT ALL 

DAY LONG”), word lists (derived by scrambling the words across sentences; “THE FOR 

JUICE UP GARDEN AROUND TRIES LILY”), and lists of unconnected, pronounceable 
nonwords (“CRON DACTOR DID MAMP FAMBED BLALK THE MALVITE”) in a 
blocked design. Each stimulus consisted of eight words/nonwords. For details of how 
the language materials were constructed, see Fedorenko et al. (2010). Stimuli were 
presented in the center of the screen, one word/nonword at a time, at the rate of 350 ms 
per word/nonword. Each stimulus was preceded by a 300 ms blank screen and followed 
by a 1350 ms screen showing the memory probe and then a blank screen for another 350 
ms, for a total trial duration of 4.8 s. Participants were instructed to perform a memory 
probe task at the end of each trial (deciding whether a word/nonword appeared in the 
string just read). Condition order was counterbalanced across runs. Experimental blocks 
lasted 24 s (with 5 trials per block), and fixation blocks lasted 16 s. Each run (consisting 
of 3 fixation blocks and 12 experimental blocks) lasted 336 s. Each participant completed 
5 runs; we here report data from the first three runs, to approximately match the amount 
of data from each condition with the other version of the language localizer.  
 
For participants from Experiments 2 and 3, the language localizer task was the same as 
that described in Section 2.5.2.3. Multiple studies show that the language localizer is 
invariant to changes in materials, task, and presentation modality, so both localizers 
should identify the same network.(e.g., Cheung et al., 2020; Diachek et al., 2020; 
Fedorenko et al., 2010; e.g., Lipkin et al., 2022; Malik-Moraleda, Ayyash, et al, 2022; Scott 
et al., 2017). 
 

5.3.3.2 Multiple demand and default mode localizer 
 
The multiple demand localizer task was the same as that described in Section 2.5.2.2. The 
hard > easy contrast has been previously shown to reliably activate bilateral frontal and 
parietal MD regions (Assem, Glasser, et al., 2020; Blank et al., 2014b; Fedorenko et al., 
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2013). Numerous studies have shown that the same brain regions are activated by diverse 
executively-demanding tasks (Duncan & Owen, 2000; Fedorenko et al., 2013; Hugdahl et 
al., 2015; Shashidhara, Mitchell, et al., 2019; Woolgar et al., 2011). The easy > hard contrast 
has been shown to localize default mode regions (Blank & Fedorenko, 2020; Mineroff et 
al., 2018), which are generally attenuated in the presence of an external task (e.g., Buckner 
et al., 2008; Buckner & DiNicola, 2019; Fox et al., 2005; Raichle, 2015).  
 

5.3.4 fMRI data acquisition 
 
The data acquisition procedure was the same as that described in Section 2.5.3. 
 

5.3.5 fMRI data preprocessing 
 
The preprocessing procedure was the same as that described in Section 2.5.4.  
 

5.3.6 First-level analysis 
 
First-level analysis procedure was the same as that described in Section 2.5.5.  For the 
localizer tasks, we modeled entire blocks. For the critical tasks, we modeled entire blocks 
(sentences, semantic task; pictures, semantic task; sentences, perceptual task; pictures, 
perceptual task) with the exception of the instruction reading phase, which was modeled 
as a separate condition. 
 

5.3.7 Defining functional regions of interest (fROIs)  
 
The critical analyses were restricted to individually defined functional regions of interest 
(fROIs). These fROIs were defined using the group-constrained subject-specific (GcSS) 
approach (Fedorenko et al., 2010; Julian et al., 2012), where a set of ‘parcels’ (masks) is 
combined with each individual subject’s activation map for the relevant contrast to 
constrain the definition of individual fROIs. 
 
The parcels delineate the expected gross locations of activations for a given contrast and 
are sufficiently large to encompass the extent of variability in the locations of individual 
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activations. We used two types of parcels: (a) semantic parcels defined based on the 
critical experiments from this study, and (b) three sets of parcels for well-established and 
characterized large-scale networks defined based on fMRI activation maps from the 
relevant localizer experiments: the language network, the multiple demand (MD) 
network, and the default mode network (DMN), all of which might contribute to 
semantic processing. The semantic parcels were generated based on the data from 30 
participants from this experiment (10 from each critical experiment, in order to provide a 
balanced representation of the three experiments). We used a subset of the data to be able 
to test whether our results generalize to left-out participants. The parcels were generated 
using a conjunction contrast of SENT_SEM > SENT_PERC (a contrast that targets 
semantic processing in sentences) and PIC_SEM > PIC_PERC (a contrast that targets 
semantic processing in pictures). The language network parcels were generated from 
previously collected language localizer data from 220 participants (using the 
sentences>nonwords contrast). The multiple demand and default mode network parcels 
were from previously collected spatial working memory task data from 197 participants 
(using the hard>easy and easy>hard contrasts, respectively). For details of the parcel 
definition procedure, see Fedorenko et al (2010). 
 
Within each parcel, we selected the top 10% most responsive voxels, based on the p-
values for the contrast(s) of interest. This top n% approach ensures that the fROIs can be 
defined in every participant, thus enabling us to generalize the results to the entire 
population (Nieto-Castañón & Fedorenko, 2012). The contrasts used to define the fROIs 
were the same as those used to create the parcels. For a simple contrast, we ranked the 
voxels based on the p-value for that contrast; for a conjunction contrast (i.e., SENT_SEM 
> SENT_PERC and PIC_SEM > PIC_PERC), we ranked the voxels based on the larger of 
the two p-values (which is equivalent to a soft “and” conjunction contrast but allows us 
to specify the exact number of voxels to be selected). 
 

5.3.8 Examining the functional response profiles of fROIs 
 
fROI response estimation procedure was the same as that described in Section 3.3.7. 
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One participant completed only one run of the multiple demand localizer task; therefore, 
we did not estimate the strength of their responses to the hard and easy multiple demand 
localizer conditions but ensured that the whole-brain activation maps for the hard>easy 
contrast looked as expected. 
 

5.3.9 Statistical analyses 
 
To compare responses across conditions, we ran linear mixed-effect regression models 
with participant as a random intercept (for analysis of responses at the network level, we 
also included fROI as a random intercept). The analysis was run using the lmer function 
from the lme4 R package (Bates et al., 2015); statistical significance of the effects was 
evaluated using the lmerTest package (Kuznetsova et al., 2017). For most analyses, we 
jointly analyzed the data from the three critical experiments while adding Experiment and 
Experiment*Condition terms to the regression model to account for potential inter-
experiment variability. All follow-up analyses used FDR correction for multiple 
comparisons; p-values were adjusted based on the number of groupings used in each case 
(e.g., number of fROIs for within-network fROI analyses, number of fROIs times the 
number of experiments for evaluating response consistency across experiments, two for 
within-network hemisphere comparisons). 
 
 
 

5.3.10  Overlap analysis 
 
To determine whether our newly defined semantic fROIs overlap with fROIs from 
previously established networks, we calculated the overlap coefficient between each fROI 
pair (using the formula: number of voxels shared / number of voxels in the smaller fROI). 
As a control, we also calculated the overlap between fROIs defined using the same 
contrast, the same experiment, and the same parcel, but using data from two different 
runs. 
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5.4 Results 
 

5.4.1 Multiple brain regions respond to semantic task across sentences 
and pictures 

 
A whole-brain group-constrained subject-specific (GSS) analysis identified 11 brain 
regions (Figure 5-2) that respond more strongly to semantic tasks compared to perceptual 
tasks for both sentences and pictures (see Section 5.3 (Method) for analysis details). Three 
of them are located in left frontal cortex (F1-F3), four are located in left posterior temporal 
and left inferior parietal cortex (TP1-4), two are located in occipital cortex (left 
hemisphere: O1, right hemisphere: O2), and two are located in the right cerebellum (Cer1 
and Cer2).  
 
Statistical analyses of response magnitudes in the semantic fROIs (Figure 5-3), showed 
above-baseline responses to the semantic tasks (all p<.001). Further, the response to the 
semantic tasks was stronger than the response to the perceptual tasks (all p<.001). Most 
fROIs had equally strong responses to sentences and pictures, with the exception of TP1 
(sentences<pictures: β=-0.81, SE=0.17, p<.001) and TP2 (sentences>pictures: β=0.57, 
SE=0.21, p=.038). There was no interaction between task and stimulus type for any fROI. 
The stronger response to semantic tasks cannot be explained by task difficulty, as shown 
in the behavioral analyses (Supplemental figure 5-1). Overall, this response pattern 
indicates strong selectivity for semantic over perceptual tasks regardless of stimulus type. 
 
No semantic fROI exhibited a significant difference between hard and easy working 
memory task, a pattern markedly different from the domain-general task-responsive 
regions that comprise the Multiple Demand network (Fedorenko et al., 2013). Only two 
fROIs exhibited significantly higher responses to sentence reading than to nonword 
reading: TP2 (β=0.72, SE=0.15, p<.001) and TP3 (β=0.52, SE=0.17, p=.011); in other fROIs, 
there was no significant difference, indicating that these regions have a distinct response 
profile from the language network. The response to sentences during the semantic task 
was stronger than the response to passive sentence reading in all fROIs except O1 and O2 
(n.s. for O1 and O2; p<=.001 for all others), suggesting that the response is at least 
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partially task-driven rather than being fully determined by the semantic content of the 
stimulus. The full table of results can be found in the Appendix (Supplemental table 5-1). 
 
Finally, the response pattern is consistent between participants whose data was used to 
define the parcels and a new set of participants (Supplemental figure 5-2). 
 

 
Figure 5-2. A left-lateralized set of parcels marking the approximate location of brain 
regions selective for semantic tasks for both sentences and pictures of events (individual 
fROIs are 10% of these parcels and their exact locations vary across individuals). 
F=frontal cortex, TP=temporal and parietal cortex, O=occipital cortex, Cer=cerebellum. 

 

 
Figure 5-3. Responses to conditions from the critical experiments (Sent=sentences, 
Pic=pictures, Sem=semantic task, Perc=perceptual task; responses to each condition are 
combined across experiments), the language localizer (S=sentence reading, N=nonword 
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reading), and the multiple demand localizer (H=hard working memory task, E=easy 
working memory task). Here and below, error bars show the standard error of the mean. 

 
 

 
Figure 5-4. Response patterns across the semantic fROIs are remarkably consistent across 
experiments. Left: responses averaged across the fROIs. Right: responses for individual 
fROIs. Sent=sentences, Pic=pictures, Sem=semantic task, Perc=perceptual task. 

 

5.4.2 The responses are consistent across experiments 
 
Selectivity for the semantic task was remarkably consistent across fROIs and experiments 
(Figure 5-4), reaching significance in all comparisons except the F3 fROI in Experiment 1 
(p=.053). Stimulus selectivity varied slightly between experiments, with  

• three fROIs showing a preference for sentences over pictures in Experiment 3 
(Cer2: β=0.23, SE=0.09, p=.040, F3: β=0.51, SE=0.18, p=.037, TP2: β=0.49, SE=0.15, 
p=.011) 

• two fROIs showing a preference for pictures over sentences in Experiment 2 (F2: 
β=-0.38, SE=0.11, p=.011, TP3: β=-0.39, SE=0.14, p=.037).  
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• two fROIs showing an interaction between stimulus type and task, with strongest 
responses to sentences during the semantic task in Experiment 1 (F2: β=0.55, 
SE=0.14, p=.009, TP2: β=-0.42, SE=0.10, p=.007). 

In addition, TP1’s preference for pictures over sentences, shown in the main analysis, 
reached significance in Experiments 1 and 2 (Expt1: β=-0.37, SE=0.08, p=.004, Expt2: β=-
0.40, SE=0.10, p=.008) but not in Experiment 3. The full results are shown in 
Supplemental table 5-2. 
 
Overall, despite some experiment-specific trends, the fROIs consistently show a 
preference for semantic task and are, in most cases, invariant to stimulus type (sentences 
vs. pictures). 
 

5.4.3 The response to semantic tasks in other cognitive networks 
 
Next, we tested the response to semantic processing of sentences and pictures in other 
networks that may contribute to semantic processing: the language network (Fedorenko, 
Behr, et al., 2011; known to respond to meaningful linguistic input; e.g., Fedorenko et al., 
2010; Scott et al., 2017), the multiple demand network (known to respond to cognitively 
demanding tasks; e.g., Duncan, 2010; Fedorenko et al., 2013; Shashidhara, Mitchell, et al., 
2019; Woolgar et al., 2011), and the default mode network (previously reported to 
contribute to semantic tasks; e.g., Evans et al., 2020; Jung et al., 2021; Lanzoni et al., 2020; 
X. Wang et al., 2021; Zhang et al., 2022). As shown in Figure 5-5 and elaborated below, 
the results show that the profile described above differs from the profiles in each of these 
three networks. 
 
The language network. Consistent with our definition criteria and replicating much prior 
work, the language regions in both hemispheres showed stronger responses to sentence 
reading than to nonword reading (LH: β=1.28, SE=0.07, p<.001, RH: β=0.48, SE=0.06, 
p<.001). In addition, the right hemisphere, but not the left hemisphere language fROIs 
showed a stimulus-type-invariant response to event semantics. In both hemispheres, the 
response to semantic tasks (aggregated across sentences and pictures) was significantly 
above baseline (LH: β=1.20, SE=0.20, p<.001, RH: β=0.70, SE=0.14, p<.001) and above the 
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response to perceptual tasks (LH: β=1.60, SE=0.11, p<.001, RH: β=0.38, SE=0.10, p<.001). 
The response to sentences was stronger than the response to pictures in the left 
hemisphere but weaker in the right (LH: β=0.63, SE=0.11, p<.001, RH: β=-0.41, SE=0.10, 
p<.001). Finally, the interaction between task and stimulus type was significant in the left 
hemisphere, with sentences evoking a stronger response for the semantic task (β=0.46, 
SE=0.11, p<.001), but not significant in the right hemisphere. Overall, although the right 
hemisphere language regions show a clear preference for sentences over nonwords, their 
response to sentences and pictures is similar in magnitude (and stronger during the 
semantic task). 
 
The multiple demand network. Consistent with our definition criteria, the multiple demand 
regions responded more strongly to the hard than to the easy working memory task (LH: 
β=1.19, SE=0.07, p<.001, RH: β=1.46, SE=0.07, p<.001) and to nonword reading compared 
to sentence reading (LH: β=-0.31, SE=0.07, p<.001, RH: β=-0.18, SE=0.07, p=.013). The 
response to the semantic task was above baseline in both hemispheres (LH: β=2.16, 
SE=0.19, p<.001, RH: β=1.78, SE=0.19, p<.001), but only the left hemisphere regions 
exhibited a preference for semantic over perceptual tasks (β=1.16, SE=0.12, p<.001). Both 
hemispheres had an overall stronger response to pictures than to sentences (LH: β=-0.27, 
SE=0.12, p=.028, RH: β=-0.53, SE=0.13, p<.001). Neither hemisphere showed an 
interaction between task and stimulus type for the critical experiments. Thus, left 
hemisphere multiple demand regions also exhibit a preference for semantic vs. 
perceptual tasks regardless of input type. Importantly, however unlike the semantic 
fROIs, these regions’ response is much stronger during the (non-semantic) spatial 
working memory task). 
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Figure 5-5. Response to conditions of interest in previously characterized networks 
(averaged across fROIs in each hemisphere). (A) The language network, (B) The multiple 
demand network, (C) The default mode network. 

 
The default mode network. Consistent with our definition criteria, the default mode regions 
responded less strongly to the hard than to the easy spatial working memory task (LH: 
β=-0.76, SE=0.07, p<.001, RH: β=-0.66, SE=0.06, p<.001). The left hemisphere also had 
stronger responses to sentence reading than to nonword reading (β=0.22, SE=0.07, 
p=.002). The response to the semantic tasks in the critical experiments was below baseline 
(LH: β=-0.27, SE=0.10, p=.020, RH: β=-0.49, SE=0.11, p<.001). The left hemisphere regions 
had higher responses to the semantic than to the perceptual task (β=0.55, SE=0.12, p<.001), 
whereas the right hemisphere regions showed no difference. There was no effect of 
stimulus type nor an interaction between task and stimulus type in either hemisphere. 
Thus, left hemisphere default mode regions show a stimulus-type-invariant preference 
for semantic vs. perceptual tasks, although their response remains below baseline.  
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Figure 5-6. Overlap between semantic fROIs and fROIs from three other cognitive 
networks (number of shared voxels divided by the number of voxels in the smaller fROI). 
Overlap within the events parcels (e.g., F1 to F1) is calculated using data from different 
runs (and is therefore a conservative estimate, as it only uses a subset of the data and the 
resulting fROIs are noisy). 

 

5.4.4 Semantic fROIs are largely distinct from known functional 
networks 

 
To determine whether any of the semantic fROIs overlap spatially with the fROIs in the 
three previously characterized networks – language, MD, and DMN – we calculated 
voxel overlap between them (Figure 5-6). We observed a) substantial overlap between 
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TP3, LTPJ (DMN), and LAngG (language), b) partial overlap between TP2 and 
LPostTemp (language), c) partial overlap between F1 and LIFG_orb (language), and d) 
partial overlap between F2 and LIFG (language). Overlap with other fROIs was negligible, 
indicating that most event semantics fROIs are distinct from regions of previously 
characterized networks.  
 
Finally, preliminary analyses on a subset of participants who participated in both 
Experiment 2 and Experiment 3 (n=7) show that fROIs defined using data from two 
different event semantics paradigms overlap but less so than fROIs defined using data 
from the same paradigm (Supplemental figure 5-3). 
 
 

5.5 Discussion 
 
We describe a set of brain regions that are active during semantic tasks regardless of 
stimulus type (sentences vs. pictures). Although a subset of these regions was implicated 
in semantic tasks before (e.g., Jefferies, 2013; Lambon Ralph et al., 2017), our key 
contribution here is to show that these regions are distinct both from the language 
network and from the domain-general multiple demand network. They are also distinct 
from the default mode network, which has been implicated in event semantics and 
semantic tasks more broadly. Thus, the regions we describe exhibit a distinct functional 
signature. 
 
Below, we discuss our findings in the context of other research work, focusing on 
anatomical areas that have been discussed in work on semantic processing. 
 

5.5.1 Inferior frontal gyrus (IFG) 
 
The nature and extent of functional specialization within the IFG has been subject of 
much debate (e.g., Friederici et al., 2011; Fuster, 1991; Koechlin & Jubault, 2006; Matchin, 
2018; Tettamanti & Weniger, 2006; Tremblay & Dick, 2016; Zaccarella & Friederici, 2017). 
Much of this debate is complicated by the fact that (a) the IFG is functionally 
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heterogeneous and (b) the location of the functionally specialized subregions in 
individual brains cannot be inferred from anatomy (e.g., Amunts et al., 1999, 2010; 
Fedorenko, Duncan, et al., 2012; Fedorenko & Blank, 2020; Tahmasebi et al., 2012; 
Vázquez-Rodríguez et al., 2019). Thus, the traditional approach of averaging activation 
maps across participants leads to the blurring of functionally specialized regions (Nieto-
Castañón & Fedorenko, 2012; Shashidhara et al., 2020).  
 
Prior work has shown that left lateral prefrontal cortex (including both inferior and 
middle prefrontal gyri) contains closely juxtaposed regions for linguistic and domain-
general executive processing (Braga et al., 2020; Fedorenko, Duncan, et al., 2012). We here 
build upon that work to demonstrate a third kind of selectivity within this cortical region: 
high responses to semantic tasks. Our findings are consistent with prior reports of neural 
responses to semantic tasks (or ‘semantic control’) within the IFG (e.g., Badre et al., 2005; 
Davey et al., 2016; Martin & Chao, 2001; Thompson-Schill et al., 1998; Whitney et al., 2011, 
2012; Zhang et al., 2022), but importantly, highlight that semantic regions’ response 
profile is distinct from that of both the language regions and the multiple demand regions. 
 

5.5.2 Posterior temporal cortex 
 
Like the IFG, posterior temporal cortex (specifically, posterior middle temporal gyrus, or 
pMTG) has been implicated in semantic control (e.g., Jefferies, 2013; Lambon Ralph et al., 
2017) and in action representation across domains (e.g., Bedny et al., 2014; Bottini et al., 
2020; Wurm & Caramazza, 2019). However, it is also considered to be a classic language 
processing site (Geschwind, 1970; Wernicke, 1874), responding to language input 
regardless of external task (e.g., Cheung et al., 2020; Diachek et al., 2020; Fedorenko et al., 
2010, 2020a; Lerner et al., 2011; cf. Tremblay & Dick, 2016 for a discussion of variability 
in the definition of “Wernicke’s area”).  
 
Here, we take a step toward reconciling these accounts. We show that pMTG 
encompasses a fROI (TP2) that is responsive to both sentences and pictures during the 
semantic task (with a small bias toward sentences), but is also engaged during passive 
sentence processing, indicating its broad sensitivity to meaning rather than just task-
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driven semantics. A preference for sentences over nonwords is a hallmark of the language 
regions, and indeed, this fROI partially overlaps with the posterior temporal fROI 
belonging to the language network (as defined with the language localizer). In addition, 
we find another fROI (TP1) located ventrally to TP2, which is sensitive to semantic task 
but does not show a preference for passive sentence reading over nonword reading. 
Unlike TP2, TP1 has a bias toward pictorial stimuli, suggesting that posterior temporal 
lobe may exhibit a selectivity gradient for sentence vs. picture semantics (as reported also 
by Devereux et al., 2013; Popham et al., 2021). 
 

5.5.3 Angular gyrus (AG) and intraparietal sulcus (IPS) 
 
The AG and, sometimes, IPS are also commonly implicated in semantic processing 
generally (Binder & Desai, 2011; Bonner et al., 2013; Kuhnke et al., 2022; A. R. Price et al., 
2015) and/or in event/thematic processing in particular (Humphreys et al., 2021; 
Schwartz et al., 2011; Xu et al., 2018; cf. Humphreys, Halai, et al., 2022; Humphreys, Jung, 
et al., 2022). Here, in accordance with previous reports, we find semantically responsive 
fROIs within left AG (TP3) and left IPL (TP4). The AG semantic fROI overlaps with the 
language and default mode fROIs within the AG, in line with its response profile: high 
responses to semantic tasks for both sentences and picture, a preference for sentence 
reading over nonword reading, and deactivation in response to a spatial working 
memory task (modulated by task difficulty). The finding that the same fROI has 
functional signatures of semantic, language, and default mode regions is important given 
the fact that AG is, in general, highly structurally and functionally heterogeneous (e.g., 
Caspers et al., 2006; Choi et al., 2006; Humphreys & Tibon, 2022; Niu & Palomero-
Gallagher, 2022; Seghier, 2013; Uddin et al., 2010) and highlights the value of functional 
localization for distinguishing between closely adjacent specialized regions (such as the 
IFG fROIs) and regions that exhibit several functional signatures (such as the AG 
semantic fROI). 
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5.5.4 Cerebellum 
 
We found semantic responses in the right cerebellum, in line with accounts of cerebellar 
involvement in cognitive function in general (e.g., Ito, 2008; Jacobi et al., 2021; Rapoport 
et al., 2000; Schmahmann, 2019; Schmahmann et al., 2019; Strick et al., 2009) and language 
in particular (e.g., Fedorenko, Behr, et al., 2011; Highnam & Bleile, 2011; Mariën & 
Borgatti, 2018; Murdoch, 2010; Smet et al., 2007; Starowicz-Filip et al., 2017), recent work 
showing cerebellum’s sensitivity to high-level conceptual information (LeBel et al., 2021), 
as well as reports of functional connectivity between cerebellar regions and cortical 
networks, including multiple demand and default mode networks (Buckner et al., 2011; 
Guell, Gabrieli, et al., 2018; Guell, Schmahmann, et al., 2018; for a review, see Habas, 2021). 
As in cortical regions, we show that the functional response profile of the fROIs we 
described (Cer1 and Cer2) is clearly distinct from both passive language and general 
executive function response profiles. Thus, our findings contribute to the body of work 
aiming to establish functional subdivisions within the cognitive cerebellum. 
 

5.5.5 Anterior temporal lobe (ATL) 
 
We did not find activity in ATL, a region commonly implicated in semantic processing 
(e.g., Bemis & Pylkkänen, 2013; Boylan et al., 2015; Humphreys et al., 2021; Lambon Ralph 
et al., 2017; Patterson et al., 2007; Schwartz et al., 2011; Visser et al., 2010, 2012). Although 
some accounts implicate the ATL in semantic representation rather than control (e.g., 
Lambon Ralph et al., 2017), we would still expect it to be more engaged during semantic 
than during perceptual tasks because performing semantic judgments would necessarily 
require activating the relevant representations. There are (at least) two possible 
explanations for why we did not observe responses in the ATL: conceptual and 
methodological. The conceptual explanation is that the ATL is engaged specifically in 
object and/or taxonomic knowledge (for review, see Mirman et al., 2017; cf. Jefferies et 
al., 2020) and therefore would not be active in a task that involves accessing event 
knowledge. The methodological explanation is that ventral ATL, which is most 
commonly implicated in general conceptual processing, has low signal-to-noise ratio in 
our data due to fMRI signal distortion (Visser et al., 2012). Thus, future work should 
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further probe the relationship between the ATL and the semantic regions described in 
this work. 
 

5.5.6 Posterior medial parietal cortex 
 
Finally, we did not observe semantic-task-evoked activity in posterior medial parietal 
cortex (precuneus and posterior cingulate areas), which was previously implicated in 
processing event semantics across input types (Baldassano et al., 2017, 2018; Fairhall & 
Caramazza, 2013). One possible reason is that this region tracks temporal input over long 
timescales (e.g., Blank & Fedorenko, 2020; Caucheteux et al., 2021; Chang et al., 2022; 
Lerner et al., 2011) and might not be sensitive to brief event presentations employed in 
our study. Another reason might be the fact that default mode network might not, in fact, 
be amodal. Some evidence indicates that the regions commonly associated with the 
default mode network, including posterior medial parietal cortex, might include distinct 
domain-specific networks (Braga et al., 2019; Deen & Freiwald, 2022; DiNicola et al., 2020), 
one of which is responsible for spatial processing and one for social processing. Under 
this account, our critical experiments (two of which focus primarily on physical 
interactions, and one focuses on social interactions) would activate different ‘default 
mode’ subnetworks, and so we would not observe a shared activation pattern. 
 
Future work should investigate the extent of semantic domain specificity within the 
semantic regions. The activations pattern we observed generalize across experiments that 
focus on animate-animate interactions and those that mainly tackle animate-inanimate 
interactions (Figure 5-4), but the majority of our participants did only one critical 
experiment, thus leaving much room for mapping out semantic specialization patterns 
within the semantic parcels (see, e.g., Deniz et al., 2019; Huth et al., 2016; Popham et al., 
2021, for evidence of such specialization). Another aspect that remains to be investigated 
in depth is the nature of semantic processing. Most fMRI studies of semantic processing 
— including our own — only employ one or two semantic tasks at a time (or focus on 
task-free processing altogether), but the nature of the task, i.e., the specific question being 
asked, has a substantial effect on brain activity (Toneva et al., 2020) and should be 
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considered further. Finally, resting state and naturalistic functional connectivity data can 
be used to determine whether these regions form a coherent network. 
 
The ability to sift through world knowledge to retrieve relevant information is a 
remarkable cognitive feat. Thus, studies of brain regions specialized for semantic 
processing provide an important contribution to a mechanistic understanding of human 
cognition. 
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5.7 Appendix 
 

5.7.1 Behavioral results 
 
The behavioral results for the three critical experiments are shown in Supplemental 
figure 5-1. 
 
Experiment 1. Average response rate was 0.80. Overall mean reaction time was 1.02s, 
SD=0.22 (SENT_SEM: 1.09s, SD=0.24; SENT_PERC: 1.01s, SD=0.23, PIC_SEM: 0.98s, 
SD=0.18, PIC_PERC: 1.01s, SD=0.21). RTs were slightly higher for the semantic task than 
for the perceptual task (β=0.02, SE=0.01, p<.001) and for sentence stimuli compared to 
picture stimuli (β=0.02, SE=0.01, p<.001), with an interaction between stimulus type and 
task (β=0.1, SE=0.01, p<.001). Overall mean accuracy was 0.82, SD=0.39 (SENT_SEM: 0.86, 
SD=0.35; SENT_PERC: 0.73, SD=0.45, PIC_SEM: 0.89, SD=0.31, PIC_PERC: 0.79, SD=0.41). 
Accuracy was higher for the semantic task than for the perceptual task (β=0.88, SE=0.09, 
p<.001) and lower for sentence stimuli compared to picture stimuli (β=-0.28, SE=0.09, 
p<.001), with no interaction between stimulus type and task. 
 
Experiment 2. Average response rate was 0.89. Overall mean reaction time was 1.51s, 
SD=0.49 (SENT_SEM: 1.41s, SD=0.56; SENT_PERC: 1.62s, SD=0.44, PIC_SEM: 1.43s, 
SD=0.42, PIC_PERC: 1.57s, SD=0.49). RTs for the semantic task were slightly lower than 
for the perceptual task (β=-0.17, SE=0.02, p<.001), with an interaction between stimulus 
type and task (β=-0.08, SE=0.03, p=0.016). There was no main effect of stimulus type on 
reaction time. Overall mean accuracy was 0.77, SD=0.42 (SENT_SEM: 0.64, SD=0.48; 
SENT_PERC: 0.84, SD=0.36, PIC_SEM: 0.77, SD=0.42, PIC_PERC: 0.84, SD=0.37). 
Accuracy was lower for the semantic task than for the perceptual task (β=-0.79, SE=0.09, 
p<.001) and for sentence stimuli compared to picture stimuli (β=-0.33, SE=0.09, p<.001), 
with an interaction between stimulus type and task (β=-0.75, SE=0.19, p<.001).  
 
Experiment 3. Average response rate was 0.90. Overall mean reaction time was 1.09s, 
SD=0.52 (SENT_SEM: 1.12s, SD=0.6; SENT_PERC: 1.03s, SD=0.51, PIC_SEM: 1.14s, 
SD=0.47, PIC_PERC: 1.06s, SD=0.5). RTs for the semantic task were slightly higher than 
for the perceptual task (β=0.09, SE=0.02, p<.001). There was no significant effect of 
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stimulus type (sentences vs. pictures) and no interaction between stimulus type and task. 
Overall mean accuracy was 0.68, SD=0.47 (SENT_SEM: 0.81, SD=0.39; SENT_PERC: 0.78, 
SD=0.42, PIC_SEM: 0.75, SD=0.43, PIC_PERC: 0.73, SD=0.44). Accuracy was higher for 
the semantic task than for the perceptual task (β=0.16, SE=0.07, p=0.031) There was no 
significant effect of stimulus type and no interaction between stimulus type and task. For 
16 participants, accuracy data from one run was erased because of a bug in the script. 
 
Overall, there is no consistent trend in difficulty patterns across experiments, suggesting 
that the observed neural response patterns cannot be explained by between-condition 
differences in difficulty. 
 

 
 
Supplemental figure 5-1. Behavioral results for the critical experiments. (A-C) Response 
times for Experiments 1, 2 and 3 respectively. (D-F) Accuracies for Experiments 1, 2, and 
3, respectively. 

 

5.7.2 The responses generalize to left-out participants 
 
We use independent sets of data (different runs of the same task) when we define a fROI 
using data from a given experiment and measure its responses to the conditions from the 
same experiment. In addition, to test how well our results generalize to a new set of 
participants, we split the participants into two groups: the first group (n=30, 10 from each 
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experiment) were used to define the parcels in Supplemental figure 5-2, and the second 
group (n=11) was left out. The results were consistent across the two groups: we observed 
a preference for semantic over perceptual tasks (both groups: p<.001), no overall effect of 
stimulus type, no interaction between stimulus type and task, no preference for sentences 
over nonwords or for hard vs. easy versions of the working memory task.  
 

 
Supplemental figure 5-2. The results generalize to a new group of participants (whose 
data was not used for parcel definition). Sent=sentences, Pic=pictures, Sem=semantic 
task, Perc=perceptual task, S=sentence reading, N=nonword reading, H=hard working 
memory task, E=easy working memory task. 

 

5.7.3 Different event semantics experiments recruit co-located but distinct 
cortical regions 

 
We report preliminary analyses where we investigate the consistency of activations 
evoked by different event semantics experiments. We calculated the overlap between 
fROIs defined using different experimental runs, as well as between-experiment overlap, 
calculated from the data of 7 participants who completed both Experiment 2 and 
Experiment 3. We find that, for most fROIs, the between-experiment overlap is 
significantly lower than any of the within-experiment overlap values, indicating that 
variation in the experiment setup does affect which exact brain areas get recruited 
(Supplemental figure 5-3). That said, as shown in Figure 5-4, the response patterns of 
fROIs defined within the same parcel are generally consistent across experiments, 
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indicating that the GSS functional localization method enables us to capture similar 
response patterns across experiments despite differences in the exact locus of activation.  
 

 
Supplemental figure 5-3. Overlap between fROIs defined using data from different runs 
of the same experiment (E1/E1, E2/E2, E3/E3) or using data from different experiments 
(E2/E3). Most cortical fROIs have lower overlap values for fROIs defined using data from 
different experiments compared to within-experiment overlap. 
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5.7.4 Supplemental tables 
 
Supplemental table 5-1. Mixed-effect linear regression results for individual semantic 
fROIs. P values are FDR-corrected for the number of regions (n=11). Sem – semantic task, 
Perc – perceptual task, Sent – sentences (critical experiments), Pic – pictures (critical 
experiments), S – sentence reading (language localizer), N – nonword reading (language 
localizer), H – hard working memory task (multiple demand localizer), E – easy working 
memory task (multiple demand localizer). E1, E2, E3 – critical experiments. 

fROI Regression Term Beta SE p value 
F2 Intercept 2.51 0.14 <.001 *** 
 S-N 0.2 0.2 0.484  
 H-E 0.48 0.23 0.226  
 Task Sem>Perc 3.26 0.29 <.001 *** 
 StimType Sent>Pic 0.06 0.29 0.971  
 Task:StimType 0.32 0.29 0.951  
 Sent_Sem>S 1.51 0.2 <.001 *** 
 SemTask>WMTask 3.23 0.33 <.001 *** 
 E2>E3 0.82 0.17 <.001 *** 
 E1>E3 -0.49 0.21 0.04 * 
 S>N:E2>E3 -0.06 0.29 0.946  
 H-E:E2>E3 0.04 0.23 0.994  
 Sem>Perc:E2>E3 1.39 0.41 0.001 ** 
 Sent>Pic:E2>E3 -0.46 0.41 0.616  
 Task:StimType:E2>E3 0.04 0.41 0.992  
 Sent_Sem>S:E2>E3 0.81 0.29 0.009 ** 
 SemTask>WMTask:E2>E3 0.99 0.33 0.004 ** 
 S-N:E1>E3 -0.21 0.31 0.843  
 Sem>Perc:E1>E3 -0.69 0.43 0.178  
 Sent>Pic:E1>E3 0.13 0.43 0.802  
 Task:StimType:E1>E3 0.23 0.43 0.915  
 Sent_Sem>S:E1>E3 -0.35 0.31 0.349  
F1 Intercept 2.09 0.16 <.001 *** 
 S-N 0.18 0.2 0.484  
 H-E 0.16 0.23 0.609  
 Task Sem>Perc 3.44 0.28 <.001 *** 
 StimType Sent>Pic 0.02 0.28 0.971  
 Task:StimType 0.22 0.28 0.951  
 Sent_Sem>S 1.39 0.2 <.001 *** 
 SemTask>WMTask 4.04 0.32 <.001 *** 
 E2>E3 0.94 0.18 <.001 *** 
 E1>E3 -0.28 0.24 0.245  
 S>N:E2>E3 -0.31 0.28 0.946  
 H-E:E2>E3 0.08 0.23 0.994  
 Sem>Perc:E2>E3 1.9 0.4 <.001 *** 
 Sent>Pic:E2>E3 -0.32 0.4 0.616  
 Task:StimType:E2>E3 -0.11 0.4 0.992  
 Sent_Sem>S:E2>E3 1.17 0.28 <.001 *** 
 SemTask>WMTask:E2>E3 1.19 0.32 <.001 *** 
 S-N:E1>E3 -0.14 0.3 0.843  
 Sem>Perc:E1>E3 -0.94 0.42 0.055  
 Sent>Pic:E1>E3 -0.15 0.42 0.802  
 Task:StimType:E1>E3 0.32 0.42 0.915  
 Sent_Sem>S:E1>E3 -0.28 0.3 0.377  
TP3 Intercept 1.04 0.11 <.001 *** 



 
 
 

157 

 S-N 0.52 0.17 0.011 * 
 H-E -0.42 0.19 0.226  
 Task Sem>Perc 2.34 0.24 <.001 *** 
 StimType Sent>Pic -0.26 0.24 0.583  
 Task:StimType -0.01 0.24 0.951  
 Sent_Sem>S 0.6 0.17 <.001 *** 
 SemTask>WMTask 3.63 0.27 <.001 *** 
 E2>E3 0.1 0.14 0.459  
 E1>E3 -0.46 0.17 0.026 * 
 S>N:E2>E3 0.03 0.24 0.946  
 H-E:E2>E3 -0.01 0.19 0.994  
 Sem>Perc:E2>E3 0.58 0.34 0.101  
 Sent>Pic:E2>E3 -0.36 0.34 0.616  
 Task:StimType:E2>E3 0.16 0.34 0.992  
 Sent_Sem>S:E2>E3 0.17 0.24 0.47  
 SemTask>WMTask:E2>E3 -0.02 0.27 0.939  
 S-N:E1>E3 0.1 0.25 0.843  
 Sem>Perc:E1>E3 -1.02 0.36 0.022 * 
 Sent>Pic:E1>E3 0.13 0.36 0.802  
 Task:StimType:E1>E3 0.12 0.36 0.915  
 Sent_Sem>S:E1>E3 -0.36 0.25 0.348  
TP2 Intercept 1.44 0.1 <.001 *** 
 S-N 0.72 0.15 <.001 *** 
 H-E -0.27 0.17 0.311  
 Task Sem>Perc 2.38 0.21 <.001 *** 
 StimType Sent>Pic 0.57 0.21 0.038 * 
 Task:StimType 0.3 0.21 0.951  
 Sent_Sem>S 0.5 0.15 0.001 ** 
 SemTask>WMTask 4.06 0.24 <.001 *** 
 E2>E3 0.62 0.12 <.001 *** 
 E1>E3 -0.52 0.14 0.004 ** 
 S>N:E2>E3 0.06 0.21 0.946  
 H-E:E2>E3 -0.06 0.17 0.994  
 Sem>Perc:E2>E3 1.22 0.3 <.001 *** 
 Sent>Pic:E2>E3 -0.35 0.3 0.616  
 Task:StimType:E2>E3 0.05 0.3 0.992  
 Sent_Sem>S:E2>E3 0.62 0.21 0.009 ** 
 SemTask>WMTask:E2>E3 0.88 0.24 <.001 *** 
 S-N:E1>E3 -0.28 0.22 0.843  
 Sem>Perc:E1>E3 -0.92 0.32 0.022 * 
 Sent>Pic:E1>E3 -0.19 0.32 0.802  
 Task:StimType:E1>E3 0.12 0.32 0.915  
 Sent_Sem>S:E1>E3 -0.29 0.22 0.348  
Cer1 Intercept 1.1 0.1 <.001 *** 
 S-N 0.14 0.1 0.332  
 H-E 0.14 0.12 0.365  
 Task Sem>Perc 1.42 0.14 <.001 *** 
 StimType Sent>Pic -0.09 0.14 0.842  
 Task:StimType 0.06 0.14 0.951  
 Sent_Sem>S 0.54 0.1 <.001 *** 
 SemTask>WMTask 1.33 0.16 <.001 *** 
 E2>E3 0.36 0.1 <.001 *** 
 E1>E3 -0.18 0.15 0.243  
 S>N:E2>E3 0.02 0.14 0.946  
 H-E:E2>E3 0.01 0.12 0.994  
 Sem>Perc:E2>E3 0.65 0.2 0.002 ** 
 Sent>Pic:E2>E3 -0.11 0.2 0.654  
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 Task:StimType:E2>E3 0.09 0.2 0.992  
 Sent_Sem>S:E2>E3 0.36 0.14 0.017 * 
 SemTask>WMTask:E2>E3 0.46 0.16 0.006 ** 
 S-N:E1>E3 -0.04 0.15 0.843  
 Sem>Perc:E1>E3 -0.46 0.21 0.055  
 Sent>Pic:E1>E3 -0.33 0.21 0.802  
 Task:StimType:E1>E3 -0.04 0.21 0.915  
 Sent_Sem>S:E1>E3 -0.38 0.15 0.121  
TP4 Intercept 1.53 0.18 <.001 *** 
 S-N 0.06 0.24 0.801  
 H-E 0.19 0.28 0.609  
 Task Sem>Perc 2.89 0.34 <.001 *** 
 StimType Sent>Pic -0.5 0.34 0.382  
 Task:StimType -0.17 0.34 0.951  
 Sent_Sem>S 1.04 0.24 <.001 *** 
 SemTask>WMTask 1.47 0.39 <.001 *** 
 E2>E3 0.66 0.21 0.002 ** 
 E1>E3 -0.32 0.26 0.243  
 S>N:E2>E3 -0.02 0.34 0.946  
 H-E:E2>E3 -0.02 0.28 0.994  
 Sem>Perc:E2>E3 1.45 0.48 0.004 ** 
 Sent>Pic:E2>E3 -0.84 0.48 0.616  
 Task:StimType:E2>E3 0.11 0.48 0.992  
 Sent_Sem>S:E2>E3 0.74 0.34 0.037 * 
 SemTask>WMTask:E2>E3 1.03 0.39 0.01 ** 
 S-N:E1>E3 0.15 0.36 0.843  
 Sem>Perc:E1>E3 -0.75 0.51 0.192  
 Sent>Pic:E1>E3 -0.32 0.51 0.802  
 Task:StimType:E1>E3 0.23 0.51 0.915  
 Sent_Sem>S:E1>E3 -0.62 0.36 0.319  
F3 Intercept 1.13 0.2 <.001 *** 
 S-N -0.07 0.23 0.801  
 H-E 0.14 0.27 0.658  
 Task Sem>Perc 2.85 0.33 <.001 *** 
 StimType Sent>Pic -0.15 0.33 0.89  
 Task:StimType -0.03 0.33 0.951  
 Sent_Sem>S 0.94 0.23 <.001 *** 
 SemTask>WMTask 3.26 0.38 <.001 *** 
 E2>E3 0.78 0.22 <.001 *** 
 E1>E3 -0.58 0.29 0.077  
 S>N:E2>E3 0.03 0.33 0.946  
 H-E:E2>E3 -0.05 0.27 0.994  
 Sem>Perc:E2>E3 2.41 0.47 <.001 *** 
 Sent>Pic:E2>E3 -0.28 0.47 0.654  
 Task:StimType:E2>E3 0.3 0.47 0.992  
 Sent_Sem>S:E2>E3 0.77 0.33 0.028 * 
 SemTask>WMTask:E2>E3 1.34 0.38 <.001 *** 
 S-N:E1>E3 0.18 0.35 0.843  
 Sem>Perc:E1>E3 -1.28 0.49 0.03 * 
 Sent>Pic:E1>E3 -0.5 0.49 0.802  
 Task:StimType:E1>E3 0.06 0.49 0.915  
 Sent_Sem>S:E1>E3 -0.76 0.35 0.165  
TP1 Intercept 1.95 0.12 <.001 *** 
 S-N -0.2 0.12 0.332  
 H-E 0.23 0.14 0.311  
 Task Sem>Perc 1.65 0.17 <.001 *** 
 StimType Sent>Pic -0.81 0.17 <.001 *** 
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 Task:StimType -0.18 0.17 0.951  
 Sent_Sem>S 0.49 0.12 <.001 *** 
 SemTask>WMTask 2.31 0.2 <.001 *** 
 E2>E3 0.75 0.12 <.001 *** 
 E1>E3 -0.36 0.18 0.077  
 S>N:E2>E3 -0.04 0.18 0.946  
 H-E:E2>E3 -0.05 0.14 0.994  
 Sem>Perc:E2>E3 0.84 0.25 0.001 ** 
 Sent>Pic:E2>E3 -0.19 0.25 0.616  
 Task:StimType:E2>E3 -0.02 0.25 0.992  
 Sent_Sem>S:E2>E3 0.69 0.18 <.001 *** 
 SemTask>WMTask:E2>E3 1.02 0.2 <.001 *** 
 S-N:E1>E3 -0.1 0.19 0.843  
 Sem>Perc:E1>E3 -0.33 0.26 0.254  
 Sent>Pic:E1>E3 0.08 0.26 0.802  
 Task:StimType:E1>E3 0.2 0.26 0.915  
 Sent_Sem>S:E1>E3 -0.21 0.19 0.349  
O1 Intercept 2.96 0.23 <.001 *** 
 S-N -0.25 0.25 0.484  
 H-E 0.35 0.28 0.365  
 Task Sem>Perc 1.83 0.35 <.001 *** 
 StimType Sent>Pic -0.01 0.35 0.971  
 Task:StimType -0.04 0.35 0.951  
 Sent_Sem>S 0.09 0.25 0.705  
 SemTask>WMTask 5.1 0.4 <.001 *** 
 E2>E3 1.43 0.24 <.001 *** 
 E1>E3 -0.86 0.34 0.036 * 
 S>N:E2>E3 0.1 0.35 0.946  
 H-E:E2>E3 0 0.28 0.994  
 Sem>Perc:E2>E3 0.29 0.49 0.551  
 Sent>Pic:E2>E3 -0.15 0.49 0.762  
 Task:StimType:E2>E3 -0.14 0.49 0.992  
 Sent_Sem>S:E2>E3 0.56 0.35 0.118  
 SemTask>WMTask:E2>E3 1.34 0.4 0.001 ** 
 S-N:E1>E3 -0.27 0.37 0.843  
 Sem>Perc:E1>E3 -0.37 0.52 0.522  
 Sent>Pic:E1>E3 0.28 0.52 0.802  
 Task:StimType:E1>E3 0.06 0.52 0.915  
 Sent_Sem>S:E1>E3 -0.07 0.37 0.843  
Cer2 Intercept 0.46 0.05 <.001 *** 
 S-N 0.03 0.08 0.787  
 H-E -0.04 0.09 0.682  
 Task Sem>Perc 1.07 0.11 <.001 *** 
 StimType Sent>Pic 0.07 0.11 0.842  
 Task:StimType -0.06 0.11 0.951  
 Sent_Sem>S 0.34 0.08 <.001 *** 
 SemTask>WMTask 1.17 0.12 <.001 *** 
 E2>E3 0.3 0.06 <.001 *** 
 E1>E3 -0.19 0.07 0.026 * 
 S>N:E2>E3 -0.01 0.11 0.946  
 H-E:E2>E3 -0.01 0.09 0.994  
 Sem>Perc:E2>E3 0.8 0.15 <.001 *** 
 Sent>Pic:E2>E3 -0.12 0.15 0.616  
 Task:StimType:E2>E3 0 0.15 0.992  
 Sent_Sem>S:E2>E3 0.32 0.11 0.008 ** 
 SemTask>WMTask:E2>E3 0.55 0.12 <.001 *** 
 S-N:E1>E3 0.02 0.11 0.843  
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 Sem>Perc:E1>E3 -0.41 0.16 0.03 * 
 Sent>Pic:E1>E3 -0.13 0.16 0.802  
 Task:StimType:E1>E3 0.08 0.16 0.915  
 Sent_Sem>S:E1>E3 -0.17 0.11 0.348  
O2 Intercept 2.71 0.19 <.001 *** 
 S-N -0.31 0.21 0.332  
 H-E 0.29 0.24 0.365  
 Task Sem>Perc 1.59 0.29 <.001 *** 
 StimType Sent>Pic -0.72 0.29 0.051  
 Task:StimType -0.04 0.29 0.951  
 Sent_Sem>S 0.15 0.21 0.502  
 SemTask>WMTask 4.43 0.34 <.001 *** 
 E2>E3 1.23 0.2 <.001 *** 
 E1>E3 -0.49 0.29 0.129  
 S>N:E2>E3 0.15 0.29 0.946  
 H-E:E2>E3 -0.08 0.24 0.994  
 Sem>Perc:E2>E3 0.39 0.41 0.384  
 Sent>Pic:E2>E3 0.35 0.41 0.616  
 Task:StimType:E2>E3 0.2 0.41 0.992  
 Sent_Sem>S:E2>E3 1.02 0.29 0.002 ** 
 SemTask>WMTask:E2>E3 2 0.34 <.001 *** 
 S-N:E1>E3 -0.24 0.31 0.843  
 Sem>Perc:E1>E3 -0.05 0.44 0.912  
 Sent>Pic:E1>E3 0.11 0.44 0.802  
 Task:StimType:E1>E3 -0.16 0.44 0.915  
 Sent_Sem>S:E1>E3 -0.33 0.31 0.356  
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Supplemental table 5-2. Mixed-effect linear regression results for individual semantic 
fROIs for each critical experiment. P values are FDR-corrected for the number of regions 
(n=11) and experiments (n=3). Same abbreviations as in Supplemental table 5-1. 

fROI Experiment Regression Term Beta SE p value 
F1 Experiment 1 (Intercept) 0.73 0.42 0.182  
  TaskSem 0.98 0.32 0.009 ** 
  StimTypeSent -0.34 0.13 0.052  
  TaskSem:StimTypeSent 0.54 0.16 0.055  
F1 Experiment 2 (Intercept) 0.41 0.28 0.248  
  TaskSem 2.61 0.5 <.001 *** 
  StimTypeSent -0.21 0.13 0.198  
  TaskSem:StimTypeSent 0.12 0.16 0.797  
F1 Experiment 3 (Intercept) 0.04 0.16 0.851  
  TaskSem 1.24 0.3 <.001 *** 
  StimTypeSent 0.24 0.12 0.129  
  TaskSem:StimTypeSent 0.01 0.16 0.972  
F2 Experiment 1 (Intercept) 0.81 0.17 0.001 ** 
  TaskSem 1.01 0.3 0.007 ** 
  StimTypeSent -0.18 0.1 0.155  
  TaskSem:StimTypeSent 0.55 0.14 0.009 ** 
F2 Experiment 2 (Intercept) 1.07 0.24 0.001 ** 
  TaskSem 2.15 0.47 <.001 *** 
  StimTypeSent -0.38 0.11 0.011 * 
  TaskSem:StimTypeSent 0.36 0.14 0.112  
F2 Experiment 3 (Intercept) 0.85 0.21 0.001 ** 
  TaskSem 1.25 0.35 0.002 ** 
  StimTypeSent 0.17 0.14 0.354  
  TaskSem:StimTypeSent 0.05 0.19 0.955  
F3 Experiment 1 (Intercept) -0.07 0.36 0.884  
  TaskSem 0.77 0.37 0.053  
  StimTypeSent -0.34 0.18 0.153  
  TaskSem:StimTypeSent 0.03 0.24 0.972  
F3 Experiment 2 (Intercept) -0.65 0.26 0.057  
  TaskSem 2.5 0.79 0.008 ** 
  StimTypeSent -0.35 0.21 0.198  
  TaskSem:StimTypeSent 0.27 0.27 0.722  
F3 Experiment 3 (Intercept) -0.23 0.35 0.692  
  TaskSem 1.06 0.29 0.002 ** 
  StimTypeSent 0.51 0.18 0.037 * 
  TaskSem:StimTypeSent -0.39 0.26 0.441  
TP1 Experiment 1 (Intercept) 1.12 0.15 <.001 *** 
  TaskSem 0.65 0.16 0.003 ** 
  StimTypeSent -0.37 0.08 0.004 ** 
  TaskSem:StimTypeSent 0.02 0.06 0.955  
TP1 Experiment 2 (Intercept) 1.38 0.18 <.001 *** 
  TaskSem 1.35 0.24 <.001 *** 
  StimTypeSent -0.4 0.1 0.008 ** 
  TaskSem:StimTypeSent -0.2 0.08 0.148  
TP1 Experiment 3 (Intercept) 1.25 0.21 <.001 *** 
  TaskSem 0.75 0.18 <.001 *** 
  StimTypeSent -0.18 0.17 0.412  
  TaskSem:StimTypeSent -0.35 0.16 0.148  
TP2 Experiment 1 (Intercept) 0.19 0.18 0.46  
  TaskSem 0.53 0.19 0.018 * 
  StimTypeSent -0.02 0.13 0.932  
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  TaskSem:StimTypeSent 0.42 0.1 0.007 ** 
TP2 Experiment 2 (Intercept) 0.26 0.27 0.485  
  TaskSem 1.63 0.33 <.001 *** 
  StimTypeSent -0.07 0.15 0.739  
  TaskSem:StimTypeSent 0.36 0.13 0.107  
TP2 Experiment 3 (Intercept) 0.05 0.12 0.738  
  TaskSem 0.98 0.25 0.002 ** 
  StimTypeSent 0.49 0.15 0.011 * 
  TaskSem:StimTypeSent 0.13 0.13 0.722  
TP3 Experiment 1 (Intercept) -0.02 0.17 0.905  
  TaskSem 0.61 0.16 0.003 ** 
  StimTypeSent -0.12 0.1 0.372  
  TaskSem:StimTypeSent 0.11 0.12 0.759  
TP3 Experiment 2 (Intercept) -0.13 0.25 0.729  
  TaskSem 1.39 0.28 <.001 *** 
  StimTypeSent -0.39 0.14 0.037 * 
  TaskSem:StimTypeSent 0.15 0.13 0.647  
TP3 Experiment 3 (Intercept) -0.11 0.23 0.729  
  TaskSem 1.54 0.35 <.001 *** 
  StimTypeSent 0.14 0.15 0.477  
  TaskSem:StimTypeSent -0.3 0.21 0.441  
TP4 Experiment 1 (Intercept) 0.35 0.19 0.163  
  TaskSem 1.04 0.22 <.001 *** 
  StimTypeSent -0.44 0.11 0.008 ** 
  TaskSem:StimTypeSent 0.06 0.15 0.955  
TP4 Experiment 2 (Intercept) 0.35 0.5 0.681  
  TaskSem 2.2 0.47 <.001 *** 
  StimTypeSent -0.64 0.24 0.046 * 
  TaskSem:StimTypeSent -0.06 0.2 0.955  
TP4 Experiment 3 (Intercept) -0.14 0.24 0.729  
  TaskSem 1.35 0.29 <.001 *** 
  StimTypeSent 0.58 0.17 0.008 ** 
  TaskSem:StimTypeSent -0.5 0.23 0.148  
Cer1 Experiment 1 (Intercept) 0.54 0.24 0.086  
  TaskSem 0.47 0.14 0.004 ** 
  StimTypeSent -0.22 0.19 0.407  
  TaskSem:StimTypeSent 0.02 0.1 0.972  
Cer1 Experiment 2 (Intercept) 0.43 0.15 0.033 * 
  TaskSem 0.96 0.19 <.001 *** 
  StimTypeSent -0.17 0.09 0.153  
  TaskSem:StimTypeSent 0.15 0.1 0.441  
Cer1 Experiment 3 (Intercept) 0.28 0.16 0.176  
  TaskSem 0.62 0.17 0.002 ** 
  StimTypeSent 0.17 0.09 0.153  
  TaskSem:StimTypeSent 0 0.13 0.972  
Cer2 Experiment 1 (Intercept) -0.05 0.09 0.729  
  TaskSem 0.32 0.13 0.025 * 
  StimTypeSent -0.04 0.05 0.497  
  TaskSem:StimTypeSent 0.02 0.06 0.955  
Cer2 Experiment 2 (Intercept) -0.17 0.1 0.176  
  TaskSem 0.97 0.18 <.001 *** 
  StimTypeSent 0.01 0.08 0.932  
  TaskSem:StimTypeSent -0.06 0.11 0.891  
Cer2 Experiment 3 (Intercept) -0.13 0.09 0.248  
  TaskSem 0.42 0.15 0.009 ** 
  StimTypeSent 0.23 0.09 0.04 * 
  TaskSem:StimTypeSent -0.14 0.12 0.647  
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O1 Experiment 1 (Intercept) 1.3 0.2 <.001 *** 
  TaskSem 0.72 0.17 <.001 *** 
  StimTypeSent 0.13 0.17 0.541  
  TaskSem:StimTypeSent 0.01 0.19 0.972  
O1 Experiment 2 (Intercept) 2.86 0.51 <.001 *** 
  TaskSem 1.16 0.34 0.004 ** 
  StimTypeSent 0.01 0.26 0.96  
  TaskSem:StimTypeSent -0.19 0.25 0.79  
O1 Experiment 3 (Intercept) 1.95 0.32 <.001 *** 
  TaskSem 0.93 0.34 0.013 * 
  StimTypeSent -0.1 0.23 0.745  
  TaskSem:StimTypeSent 0.05 0.29 0.972  
O2 Experiment 1 (Intercept) 1.55 0.18 <.001 *** 
  TaskSem 0.87 0.26 0.004 ** 
  StimTypeSent -0.21 0.24 0.497  
  TaskSem:StimTypeSent -0.2 0.26 0.79  
O2 Experiment 2 (Intercept) 2.78 0.37 <.001 *** 
  TaskSem 0.91 0.27 0.006 ** 
  StimTypeSent -0.26 0.2 0.322  
  TaskSem:StimTypeSent 0.16 0.14 0.667  
O2 Experiment 3 (Intercept) 1.9 0.27 <.001 *** 
  TaskSem 0.67 0.28 0.023 * 
  StimTypeSent -0.55 0.22 0.052  
  TaskSem:StimTypeSent -0.08 0.25 0.955  



  

Chapter 6  
 

Conclusion 
 
 

6.1 Thesis summary 
 
My thesis work supports the hypothesis that the mechanisms underlying language 
processing are distinct from mechanisms underlying other cognitive functions.  
 
In Chapter 2, I examined brain responses to computer code, an input whose structure is 
very similar to natural language. Based on this similarity, I hypothesized that the 
language network might contribute to computer code comprehension. My collaborators 
and I conducted two experiments testing the brain response to two different 
programming languages: Python and ScratchJr. A key feature of our design was a 
distinction between computer code comprehension (the process of extracting meaning 
from code based on semantic and syntactic rules, which I hypothesized to be the most 
language-like) and analyzing program content (mentally simulating the piece of code to 
determine the output). The language network responded weakly to computer code 
comprehension for Python and not at all for ScratchJr; however, another set of brain 
regions, known as the multiple demand network, responded robustly to computer code 
comprehension in both programming languages. I concluded that computer 
programmers recruit their multiple demand brain regions to process computer code, and 
the language regions remain functionally specialized for language. 
 
In Chapter 3 and Chapter 4, I examined the role of the language network in processing 
non-linguistic stimuli (pictures) during tasks that required accessing their semantic 
content. I found no response in the language regions to object semantics (e.g., deciding 
whether the animal presented on the screen is dangerous) and weak response to 
combinatorial event semantics (e.g., deciding whether a criminal arresting a cop is a 
plausible event). I furthermore showed that the language network’s engagement in event 
semantics is not necessary: individuals with global aphasia, whose language network 
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function is severely impaired, can nevertheless perform an event semantics task at a level 
close to that of neurotypical controls. Finally, in Chapter 5, I showed that another set of 
regions, distinct from the language network, does respond strongly to both sentences and 
pictures during semantic tasks, which constitutes further evidence that linguistic and 
semantic processing are spatially segregated in the human brain. 
 

6.2 Language processing outside of the language network 
 
In preceding chapters, I often equate linguistic processing with activity in the language 
network. Is this a reasonable approach? After all, activity in other regions might 
contribute to aspects of language processing not covered by the language localizer, such 
as discourse or pragmatics. 
 
In this section, I show that, indeed, real-life language use engages not only the language 
network, but also other brain networks. Those networks support specific aspects of 
language, including error correction, reasoning about the effect of an utterance on other 
people, and connecting information across sentences. These aspects might be plausibly 
construed as essential parts of language processing; however, evidence to date shows 
that the networks supporting them process both linguistic and non-linguistic inputs, 
meaning that, unlike the core language network, they cannot be considered language-
specific. Thus, we should view language as a cognitive faculty relying on a specialized 
module (the language network) that is tightly integrated with — and dependent upon — 
multiple downstream processing mechanisms.  
 

6.2.1 Multiple demand network: hard language and external tasks  
 
In Chapter 2, I have described the multiple demand network — a set of domain-general 
brain regions that are active during diverse cognitively challenging tasks (Cole & 
Schneider, 2007; Duncan, 2010; Duncan & Owen, 2000; Hugdahl et al., 2015; Shashidhara, 
Mitchell, et al., 2019). Multiple demand and language networks are robustly dissociable, 
as evident from both neuroimaging studies (Assem, Blank, et al., 2020; Blank et al., 2014a; 
Diachek et al., 2020; Fedorenko et al., 2013; Mineroff et al., 2018; Shain et al., 2020) and 
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studies of individuals with brain damage (Gläscher et al., 2010; MacGregor et al., 2022; 
Woolgar et al., 2010, 2018a).  
 
The multiple demand network contributes to language use in several ways. One, it gets 
engaged in cases when language use is effortful, such as comprehension of acoustically 
degraded, ambiguous, or syntactically unusual utterances (e.g., Kuperberg et al., 2003; 
MacGregor et al., 2022; Nieuwland et al., 2012; Wild et al., 2012; for reviews, see Novick 
et al., 2010; Fedorenko, 2014). Two, it is recruited in the presence of an external task, such 
as answering a question, deciding whether a given word was present in a sentence, or 
naming a picture on demand (Cheung et al., 2020; Diachek et al., 2020; Hu, Small et al, 
2021). Three, it is required for processing certain types of content, such as math 
statements or logic problems, even when the problem is presented linguistically (Amalric 
& Dehaene, 2016, 2019; Monti et al., 2007, 2009, 2012). Thus, real-life language use 
involves a dynamic interplay between language and multiple demand networks. 
 
That said, the multiple demand network is not dependent on language regions: if the 
input to a challenging tasks is non-linguistic, it activates the multiple demand network, 
but the language regions do not get engaged (e.g., Fedorenko et al., 2013; see also 
Chapters 2 and 3 of this thesis). In contrast to the view that language and reasoning rely 
on a shared processing system, we see that language processing interacts with domain-
general reasoning mechanisms in specific, well-defined ways. 
 

6.2.2 Theory of mind network: pragmatics and social inference 
 
A wealth of neuroscientific evidence shows that the human brain has dedicated 
machinery for processing social information (e.g., Adolphs, 1999, 2009; Deen et al., 2015; 
Isik et al., 2017; Lee Masson & Isik, 2021; Saxe, 2006; Tarhan & Konkle, 2020; Walbrin et 
al., 2018). Perhaps the most relevant to our current discussion is the theory of mind 
network, a set of brain regions that are engaged when their owner is trying to infer 
another person’s mental state (Fletcher et al., 1995; Gallagher et al., 2000; Jacoby et al., 
2016; Saxe, Moran, et al., 2006; Saxe & Kanwisher, 2003; Saxe & Powell, 2006). Similar to 
the multiple demand network, the theory of mind network constitutes a separate 
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cognitive module that is anatomically and functionally distinct from the language 
network (Apperly et al., 2006; Deen et al., 2015; Paunov et al., 2022; Shain, Paunov, X. 
Chen et al., 2022; Varley et al., 2001; Varley & Siegal, 2000; Willems et al., 2011). However, 
it too contributes to specific aspects of language understanding. First, it is engaged during 
nonliteral language comprehension, such as jokes, sarcasm, indirect speech, and 
conversational implicature (Feng et al., 2017, 2021; Hauptman et al., 2022; Jang et al., 2013; 
Spotorno et al., 2012; van Ackeren et al., 2012; for a review, see Hagoort & Levinson, 2014) 
— in other words, in situations where understanding the meaning of an utterance 
requires inferring the intentions of the speaker. Second, just like other functionally 
specialized brain modules, it is engaged when processing semantic content that is 
specifically related to its domain: narratives that require inferring the mental state of the 
characters engage the theory of mind network regardless of whether the actual stimuli 
are texts or as movies (Jacoby et al., 2016; Paunov et al., 2022), and texts that require 
inferring the characters’ intentions evoke greater activity than those that do not (Ferstl & 
von Cramon, 2002; Fletcher et al., 1995; Saxe & Powell, 2006). Thus, successful language 
understanding and use rely on our broader, non-language-specific social inference skills.  
 

6.2.3 The default mode network: narratives and situation modeling 
 
As discussed in Chapter 1, the language network is sensitive to linguistic regularities that 
apply to units of different ‘grain size’, from phonemes to morphemes to words to phrases 
and clauses (Blank & Fedorenko, 2020; Fedorenko, Behr, et al., 2011; Fedorenko et al., 
2020a; Fedorenko, Nieto-Castañon, et al., 2012; T. I. Regev et al., 2021). However, it is not 
sensitive to structure above the clause level (Blank & Fedorenko, 2020; Caucheteux et al., 
2021; Jacoby & Fedorenko, 2020; Lerner et al., 2011; Yeshurun, Swanson, et al., 2017; 
Yeshurun, Nguyen, et al., 2017), suggesting that it does not carry out the computations 
required to integrate information across sentences.  
 
What brain network integrates individual sentences to build an overall situation model 
of the described events?  Neuroimaging evidence points to the network that includes 
medial parietal and prefrontal regions, often referred to as the default mode (or default) 
network (Andrews-Hanna, 2012; Buckner et al., 2008; Buckner & DiNicola, 2019; Greicius 
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et al., 2003). This network is recruited for coherent texts more than for disconnected 
sentences (e.g., Ferstl et al., 2008; Ferstl & von Cramon, 2002; Simony et al., 2016), encodes 
specific event schemas, such as going to a restaurant (Baldassano et al., 2018), and has a 
long temporal integration window, which enables it to integrate information over 
multiple sentences (e.g., Blank & Fedorenko, 2020; Caucheteux et al., 2021; Jain et al., 2020; 
Jain & Huth, 2018; Lerner et al., 2011). Just like the multiple demand and the theory of 
mind networks, the default mode network is not language-specific: it exhibits similar 
information processing signatures when people process both verbal and nonverbal 
narratives (Baldassano et al., 2017, 2018).  
 
Recent work has suggested that the default mode network may consist of two distinct 
interdigitated sub-networks (Braga et al., 2020; Deen & Freiwald, 2022; DiNicola et al., 
2020). One of them appears to correspond to the theory of mind network (Saxe & 
Kanwisher, 2003) discussed in Section 6.2.2. The exact contributions of the other sub-
network remain debated, with different proposals linking its functions to episodic 
projection (placing oneself into the past, when remembering things, or into the future, 
when imagining things; Buckner et al., 2008), scene construction and situation modeling 
(Hassabis & Maguire, 2009) or spatial cognition in general (Deen & Freiwald, 2022). Based 
on the evidence so far, two options are likely: either discourse-level information is 
processed by the default mode network, with theory of mind network getting engaged 
when social inference is required, or the information is passed in parallel to the two 
networks, one of which constructs a physical situation model, and the other constructs a 
social situation model.  
 
In either case, we can conclude that, in the human brain, the task of tracking information 
over multiple sentences is allocated to a system (or systems) that is not only separate from 
the core language network but is also shared between linguistic and non-linguistic inputs. 
The fact that people’s memory for precise linguistic forms is relatively poor (Lombardi & 
Potter, 1992; Potter & Lombardi, 1990, 1998; cf. Gurevich et al., 2010) aligns well with the 
idea that the language input, once processed, is then passed on to downstream, non-
language-specific regions, which are tasked with the goal of integrating sentence-level 
information into an overall situation model. 
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6.2.4 Semantic demand fROIs and other brain regions 
 
Finally, in Chapter 5, I describe a set of regions that are active during a semantic task 
during both sentence and picture processing. Although we still know little, their 
involvement pattern so far resembles the pattern described for other networks discussed 
in this section: they are not language-specific (or biased toward language inputs) but 
contribute to language use in certain situations. Thus, it appears that the language 
network interfaces with additional neural machinery dedicated to semantic processing in 
the presence of an external task (i.e., semantic demand). Whether the semantic demand 
regions form a network or can be broken down into different groups remains to be 
established.  
 
This list of extra-linguistic brain regions/networks is, of course, not exhaustive. 
Subcortical brain structures that may contribute the language processing include the 
hippocampus (Blank, Duff, et al., 2016; Duff & Brown-Schmidt, 2012, 2017) and the basal 
ganglia (e.g., Bohsali & Crosson, 2016; Crosson et al., 2007; Damasio, 1983). Whole-brain 
encoding models of brain activity reveal language-evoked responses in a multitude of 
cortical regions outside the classical language areas (Caucheteux & King, 2022; Huth et 
al., 2016; T. M. Mitchell et al., 2008; Pereira et al., 2018; Schrimpf et al., 2021), many of 
which might process domain-specific information conveyed via language. The overall 
picture, however, remains the same: contextualized, real-life language processing 
requires an interaction between the core language network and multiple other brain 
regions, which contribute specific aspects to language understanding and use but are not 
themselves dependent on language regions.  
 

6.3 “Language as a foundation for human cognition” revisited 
 
How does the neuroscience-informed view of language processing contribute to our 
understanding of the relationship between language and other cognitive functions? First, 
it enables us to build a cognitive ontology (Lenartowicz et al., 2010; Poldrack et al., 2011; 
C. J. Price & Friston, 2005) of basic processes that contribute to language understanding. 
We now know that syntax, lexical semantics, and combinatorial semantics rely on shared 
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processing mechanisms (see Section 1.3), but narrative-level processing and many 
aspects of pragmatics rely on separate cognitive modules (see Section 6.2). Second, once 
we know which cognitive/neural modules contribute to language processing, we can 
determine whether each of them is language-specific. We are therefore able to establish 
that the mechanisms dedicated to word- and sentence-level processing rely on a 
specialized set of brain regions, whereas the mechanisms dedicated to narrative-level and 
pragmatic processing rely on non-language-specific mechanisms. And finally, we can 
apply this knowledge to hypotheses describing the language-thought relationship by (a) 
using our knowledge of cognitive modules to better define what we mean by ‘language’ 
and (b) providing evidence in favor or against the interdependence between language 
and other aspects of human cognition. 
 
In this thesis, I have shown that the system that carries out the core aspects of language 
processing (lexical semantics, syntax, combinatorial semantics, etc.) does not support 
other cognitive functions. I have tested domains that are most likely to rely on the same 
system as language: programming languages (Chapter 2) and pictures with semantic 
content during semantic tasks (Chapter 3 and Chapter 4). The language network showed 
a preference for sentences over all other types of stimuli. Furthermore, in cases where I 
observed some response in the language network to non-linguistic input, I also found 
evidence against the claim that this response is essential to the process in question: for 
computer programming (Chapter 2), the activity was observed for only one of the two 
programming languages tested, and for event semantics (Chapter 4), the language 
network was not causally implicated in successful task performance.  
 
The non-language-specific semantic demand regions (Chapter 5) do constitute evidence 
of shared processing mechanisms between linguistic and non-linguistic input; however, 
most of them are only active in the presence of an external task and do not respond to 
passive sentence reading. As such, they do not constitute part of the primary language 
processing pipeline. In fact, it would be counterintuitive to label these regions as 
responsible for ‘language’, when we have evidence of another system that gets activated 
for core aspects of language processing regardless of specific language, input modality, 
or presence of a task. Thus, the existence of amodal semantic demand regions is not 
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evidence that language underlies semantic processing, but rather that the language 
network interacts closely with other cognitive modules (as discussed in Section 6.2). 
 
The “language as a foundation for thought” view posits that linguistic representations 
and/or computations are accessed during non-linguistic processing (e.g., Carruthers, 
2002; Chomsky, 2007; Gauker, 2011; Hauser et al., 2002). We see that this is not the case: 
linguistic representations and computations, whether lexical or syntactic, reside within a 
functionally specialized module that remains untapped during other functions that 
require syntactic combination (music, math, computer programming), semantic 
combination (interpreting a visually presented event), or accessing semantic knowledge 
in general (semantic categorization). Moreover, the language network relies on other 
cognitive modules during real-life language use (e.g., the multiple demand network 
when the input is noisy or on the theory of mind network when the input requires non-
literal interpretation), which goes against the view that it serves as a foundation for other 
functions. Thus, cognitive neuroscience provides a clear perspective on the nature of the 
relationship between language and broader human cognition.  
 

6.4 Caveat: development is different 
 
As mentioned in Chapter 1, I focus on the relationship between linguistic and non-
linguistic processing mechanisms in adult, fully developed human brains. The functional 
interdependence between language and other cognitive functions during development is 
a different matter. Evidence points to a tight coupling between learning number words 
and learning numbers themselves (e.g., Bull et al., 2011; Frank et al., 2008; Pitt et al., 2022), 
between language experience and the development of theory of mind (e.g., Moeller & 
Schick, 2006; Peterson, 2016; Peterson & Siegal, 1995; Richardson et al., 2020), and possibly 
even between language experience and situation modeling (Peterson & Slaughter, 2006). 
Thus, although the networks discussed in Section 6.2 are independent from language in 
adulthood, their development does, at least to some extent, depend on the amount and 
content of the language input.  
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So far, evidence of a relationship between language and other cognitive functions during 
development has come primarily from cases of language deprivation in childhood (most 
common of which is deaf or hard of hearing children with delayed access to sign language 
and/or hearing aids) and from studies of cross-linguistic differences (e.g., numeric 
cognition in speakers of languages without exact number terms). Today, we have another 
putative source of information about the role of language in development: computational 
models. Artificial neural networks trained exclusively on language input acquire large 
amounts of information about the world (T. B. Brown et al., 2020; Chowdhery et al., 2022; 
Grand et al., 2022; Petroni et al., 2019; Tshitoyan et al., 2019; Unger & Fisher, 2021, among 
others), although their cognitive capabilities remain brittle (Elazar, Kassner, et al., 2021; 
Elazar, Zhang, et al., 2021; Ettinger, 2020; A. Patel et al., 2021; Schuster & Linzen, 2022; 
Talmor et al., 2020, among others). In general, large language models provide a fertile 
ground for dynamically simulating interactions and interdependencies between different 
cognitive modules and are likely to provide useful insights on the relationship between 
language and cognitive functions throughout development. 
 

6.5 Implications for inner thought 
 
Philosophers and linguists who claim language to be essential for thought often refer 
specifically to inner thought — a sequence of mental representations that people produce 
either unprompted (e.g., when daydreaming or reminiscing) or in response to an external 
need (e.g., when figuring out an answer to a question). The work described in this thesis 
primarily addresses the latter. I asked: do people rely on language processing 
mechanisms when accessing a specific, externally cued aspect of world knowledge? The 
results show that they do not, highlighting a dissociation between language and task-
driven cognitive processing. But what about unprompted inner thought? 
 
Neuroimaging evidence so far suggests that inner thought relies on mechanisms outside 
the language network. Activity in the language network is low at rest (when unprompted 
thinking is most likely to occur) compared to sentence reading or even to nonword 
reading (Fedorenko, Behr, et al., 2011; Fedorenko et al., 2010). Furthermore, activity 
patterns of different language regions are less correlated at rest than during story 
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listening (Blank et al., 2014a). In contrast, a set of regions known as the default mode 
network is most active at rest and gets deactivated during external tasks, suggesting that 
those regions do contribute to internally oriented thought (Andrews-Hanna, 2012; 
Buckner et al., 2008; Greicius et al., 2003).  
 
Furthermore, evidence from individuals with global aphasia (see Section 1.3) indicates 
that they can continue to think and reason even in the absence of language. Internal 
thinking is (by definition) hard to evaluate externally, but evidence from individuals who 
have experienced aphasia suggests that inner thought can proceed even in the absence of 
language.  
 
Tom Lubbock, an art critic, documented the deterioration of his language skill caused by 
a brain tumor (Lubbock, 2010, 2012). At some point, watching his language decline, he 
wrote: “I think that loss of speech, and of understanding of speech, and of understanding 
of writing, and of coherent writing – these losses will amount to the loss of my mind. 
<…> Mind means talking to oneself. There wouldn't be any secret mind surviving in me.” 
And yet, a few months later, he noted (with his wife now writing for him): “I find my 
brain is still busy, moving, thinking. I am surprised. My language to describe things in 
the world is very small, limited. My thoughts when I look at the world are vast, limitless 
and normal, same as they ever were.” Throughout this period, he continued to write art 
reviews, despite increasing difficulties with word retrieval. Even though his language 
skills were deteriorating, he still had thoughts about art that he wanted to express.  
 
Researchers Lecours and Jeanette (1980) described the case of Brother John, a French 
monk who experienced transient periods of aphasia (affecting both production and 
comprehension) with no impairment in thought. Oftentimes, Brother John did not even 
realize he was undergoing an episode of aphasia unless he tried to read or listen to the 
radio. His planning skills remained intact: when he was experiencing an episode, he 
would indicate to his colleagues to call the researchers and would continuously test 
himself (by recording his speech or trying to write) at regular intervals until they arrived. 
Just as Tom Lubbock, Brother John could think about the world in all its complexity and 
vastness even in the absence of language. 
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Thus, as with many other cognitive capacities, neuroimaging studies and evidence from 
individuals with aphasia converge to show independence of language and inner thought. 
 
Many would find this conclusion surprising, stating that they often experience an inner 
voice, which constantly packages their thoughts, memories and plans into a verbal frame. 
To them, language is obviously an important part of inner thought. However, the 
experience of language-like inner thought varies greatly between individuals: some think 
primarily in language, others do not experience inner speech at all, and others are 
somewhere in between (e.g., Heavey & Hurlburt, 2008; Hurlburt et al., 2013; Klinger & 
Cox, 1987; Roebuck & Lupyan, 2020). Thus, it appears that language can contribute but 
is not necessary for inner thought, just like it contributes to but is not necessary for event 
understanding (see Chapter 4).  
 
For people who perceive their inner thought as highly verbal, losing the ability to use 
language might alter their conscious experience. For instance, a neuroscientist Jill Bolte 
Taylor experienced a stroke which, for some time, left her with aphasia (Taylor, 2006, 
2008). She reports that, during the stroke: “my brain chatter, my left hemisphere brain 
chatter went totally silent. Just like someone took a remote control and pushed the mute 
button and — total silence.” She also reports changes in her sense of self and her ability 
to plan, but it is unclear whether they are linked to language or to other left-lateralized 
brain networks. The latter seems more likely given cases like that of Brother John, who 
experienced no impairment in his planning skills and, as far as we know, no changes in 
his sense of self.  
 
The extent to which individual variability in inner thought affects the language-thought 
relationship is an open question subject to future research. One interesting conjecture is 
that a researcher’s subjective experience of their inner thoughts might influence their 
theorizing about the role of language in cognition. Perhaps people whose thoughts have 
more verbal content are more likely to claim that language is foundational for thought. 
Like Tom Lubbock, they might perceive their mind and their sense of self to be tied to 
words; unlike Tom Lubbock, they might never realize that, even in the absence of words, 
their thoughts would still be there.  
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